

ART for Optimized Repeater Flop Network in Hard
IP Design

Shweta Sharma
IP Logic design Engineer

Intel Technologies
Bangalore, India

shweta1.sharma@intel.com

Rahul S Bhatt
IP Logic Desing Engineer

Intel technologies
Bangalore, India

rahul.s.bhatt@intel.com

Shyam A
Firmware Design Engineer

Intel Technologies
Bangalore, India

shyam.a@intel.com

Abstract—

In all Hard IP (HIP) designs, there is a need for signals to travel
from its source to destination module. To meet timing, they are
flop repeated, based on the floorplan of the design. Different
signals have unique repetition requirements based on their
functionality/timing criticality. Also signals may have single
destination or multiple destinations.

The flop repeater structure for each signal should be optimized
so that it has minimum number of flops and timing is also met, to
achieve desired targets for timing, area and power. This paper will
show how we are create optimized tree structure based on
mathematical techniques and generate automated RTL for such
repeater flop module. This submission presents a new tool ART
(Auto Repeater Tool) that completely eliminates the manual
effort/time required to generate functional, ready to plug-in RTL.

Keywords— Optimized repeater flop structure, Automated RTL,
SREP/TREE, Logic design

I. INTRODUCTION

The Hard IP (HIP) designs, nowadays, are getting very
competitive in terms of power and area. The basic element
consuming power is the flip flop. The more the number of flops,
the greater the power consumption. Modern designs are having
thousands of signals which are flop repeated multiple times from
source to destination. Most of the IPs have a dedicated module,
let’s call it “Repeater Channel”, which flop repeats these signals
and feeds them to their destination module. The functionality of
such Repeater Channel module is very critical as it has to
carefully flop repeat each signal based on multiple parameters
like its functionality, timing criticality, number of endpoints
(destination module) etc.

The important question is how to decide number of flop
stages required for these signals to travel from source ‘Misc
Logic’ partition to “Data, Command, Control’ partitions. There
are multiple factors which are taken into account to calculate
this.

 Floorplan of our IP (Dimensions of the different
partitions, Type/Name of each partitions) [refer Figure
1 below]

 Distance that the signal has to travel from source to
destination partition

 Single flop drive strength

DATA1

DATA2

DATA5

DATA3

DATA4

Command2

Control

Command1

M
I
S
C

L
O
G
I
C

R
E
P
E
A
T
E
R

C
H
A
N
N
E
L

Figure 1: Reference HIP Floorplan

Problem 1: All signals cannot be flop repeated in same
manner.

We need to come up with the custom structure for each
signal to have the optimized number of flops. This structure can
be a flop tree for multiple endpoints or a serial repeater chain
(SREP) for single endpoint.

Problem 2: Finding a tree structure with least number of
flops is very cumbersome.

We won’t be talking about the serial chains here as they
don’t need any optimization. Number of flop stages in SREP,
which is calculated based on geometry and flop drive strength,
is fixed for that geometry and it doesn’t have any room for
optimization. For example, if a signal requires 5 stages to travel
from partition A to partition B, then in a SREP we cannot have
4 stages as geometry itself requires 5 stages. However, if a signal
is less timing critical and we want to add more than 5 stages, we
have an option for that also.

There is a lot of scope for optimizing number of flops in the
tree structure. This is critical as there are multiple mathematical
ways to create the tree. Finding a tree structure with least number
of flops is very cumbersome hence here we have developed an
algorithm to solve this.

Traditionally we manually calculate number of repeater flop
stages needed & then hand code the RTL for it, which is error
prone, time consuming and not really scalable. The process
involves putting a series of flops from source module till
destination module with each flop branching into maximum of
2 flops. This binary flop generation is repeated till all the
endpoints are connected.

The disadvantages of this solution are

 Increased Area & Power: More number of flops are
used as the generated tree structure may not be optimal.
This increased the area of the HIP.

 Manual & error prone: Time taken for development is
more as each signal has to be hand coded.

We have developed an automated system which takes all the
necessary inputs and does all the calculation and analysis. Our
system comes up with an optimized tree structure and
automatically generates a functional RTL module so the RTL
we are getting is completely automated and also most optimized.
On top of that, user also has flexibility to add additional flops
for the signals that is not timing critical.

II. ART FRAMEWORK

A. ART elements

The system we have developed consists of 3 different
utilities working together.

Utility1: Excel
Floorplan based Flop Calculator

Utility2: “C
Language”

Tree Optimizer

Utility3: PERL

RTL Code
Generator

F
l
o
r
p
l
a
n

Flop Drive
Strength

Partition
Dimension

Flop
Degradation

Distance
between
Partitions

Flop Count
between
Partitions

Optimized
Tree

Structure

Figure 2 Overview of RTL Generator Framework

Utility 1 Floorplan based Flop Calculator: It is the master
utility which controls the whole flow. This calculates the
number of flops needed between source module and destination
module based on the floorplan. It passes all these inputs to Tree
Optimizer in ‘.csv’ format.

Utility 2 Tree Optimizer: This is C based algorithm. Inputs
are the number of flop stages and the degradation factors for
various fanouts. Flop calculator then takes the optimum tree
structure dumped by Tree Optimizer and then excel file is passed
to the ‘RTL Code Generator’.

Utility 3 RTL Code Generator: The RTL Code Generator
generates a functional RTL code in .sv format and can be
plugged in to create signal repetition between modules.

B. Floorplan based Flop Calculator

Below is the snapshot of the excel sheet in which we feed the
required inputs and information to do the mathematical
calculation.

Table1: Partition
Dimensions

Table2: Flop Drive
Strength for critical

and non-critical
signals

Table3: Degradation
in flop drive strength
if flop is driving 2 and

3 flops

Table4: Floorplan
Text Representation

Table7: Information
used to generate an

RTL

Table5: Distance
getting calculated

automatically
between each

partitions in floorplan

Table6: Minimum
flops required
between each

partitions in floorplan

Button1: To get the
Distance Table5

Button2: To get the
minimum flop Table6

Button3: To get the
Revised tree after the

degradation in
distance

Figure 3 Floorplan Inputs and Calculations

Calculations are done automatically with click of a button
embedded in Excel Sheet. These buttons will run the VBA
macro to generate the data.
Table1 consists of the dimensions of the partitions our IP is
having.
Table2 is the drive strength of a flop when it is driving a single
flop.
Table 3 indicates how much degradation the flop will have in
its drive strength when it is driving 2 and 3 flops further down.
Table 4 is the textual representation of our floorplan which
indicates which partition is at what position.
Button1 gives us the Table5 which is the midpoint distance
between each partitions in floorplan.
We are using midpoint distance and not specific X/Y location
of ports on the border as X/Y location of ports is very specific
to Back-End and subject to change.
We want to have a little flexibility for the Back-End by not
being too specific by having exact distance. Midpoint of
partition gives us pessimistic distance which gives us extra
margin in terms of distance. The ports interacting with North
partitions are mostly located above the midpoint of the source
partition boundary and those interacting with South partitions
are mostly located below the midpoint of the source partition
boundary.

There are 2 different cases for midpoint distance calculation.

Case 1: Distance between adjacent partitions (e.g. between
Data5-Data4, Data5-Data3…Data5-Control).
To calculate center to center distance between partition x and
partition y, following is the formula we used in the VBA macro.

𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ቀ
𝑥௧

2
ቁ + ቀ

𝑦௧

2
ቁ + 𝑥𝑦௧

 Where,
 Xheight = height of partition x
 Yheight = height of partition y
 XYheight = Sum of height of all partitions between x
and y

Case 2: Distance between source partition (Misc Logic) to end
partitions (data, command and control).
To calculate the center to center distance between Misc Logic
and Partition Command1, we have used following formula.

𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

= ቆ𝑟𝑝𝑡௧ −
𝑐𝑚𝑑1

2

− 𝑡𝑖𝑙𝑙𝐶𝑚𝑑1௧ቇ

− ൬
𝑀𝑖𝑠𝑐𝐿𝑜𝑔𝑖𝑐௧

2
+ 𝑀𝑖𝑠𝑐𝐿𝑜𝑔𝑖𝑐ை௦௧൰

 Where,
 rptheight = Height of Repeater Channel partition
 cmd1height = Height of Command1 partition
 tillCmd1height = Sum of height of all partitions from top
till Command1 partition
 MiscLogicheight = Height of Misc Logic partition
 MiscLogicOffset = Distance between bottom edge of
Repeater Channel and bottom edge of Misc Logic

Button2 gives us the minimum number of flops required
between each partition in Table6 which is based on Table5 and
Table2. This will divide the distance we got in Table5 by the
Table 2 numbers of ‘For Critical’ and ‘Non Critical’ Flop Drive
Strength and round it up to the nearest ceiling value.

Button3 generates an optimized tree structure, which is an
output of Tree Optimizer (.exe file), for all the predefined signal
categories in Table 7. We are passing the .exe file to the excel
macro running behind this button which runs the executable file
within the macro and captures the output in Table 7.

Table7 consists of the initial optimized Tree structure given by
our “C” based algorithm which takes .csv file as an input. We
have divided all the input signals into some predefined
categories based on the functionality of these signals. Tree
structure for each of these categories will be different
depending on the stages required and number of endpoints.

C. Tree Optimizer

Tree optimizer is a C based algorithm. It takes the distances
between source and destination endpoints, flop drive strength
and degradation factors as inputs and dumps the optimized tree
structure for the given input. This is implemented based on the
tree data structure. Here root of tree will be the source endpoint
and all leaf nodes represent the destination endpoint. Each node
in between root and tree is a flop. Tree Optimizer mainly has 3
phases.

Phase 1:
In phase 1 it finds the farthest endpoint (say x) from the source
and creates a chain of flops to connect from the source module
to x. In C, each flop is realized using a node of tree.
In Figure 4, MISC is the source module and we need to repeat
the MISC signal to Data1, Data2, Data3, Data4, Data5 and

Data6 modules. Farthest destination endpoint here is Data1 so
in phase 1 we create a tree where the root is MISC and has only
1 leaf node - Data1. The number of levels of this tree will be
equal to the flop drive length between MISC and Data1. The
chain will look like below if the flop drive length is 6. In this
phase each of the nodes (node1:6) are assigned its height
position relative to the source endpoint.

Source
Endpoint

Destination
Endpoints

Data1

Data2

Data3

Data4

Data5

Data6MISC

1

2

3

4

5

6

Figure 4 Tree Optimizer Phase 1

Phase 2:

In phase 2 the algorithm looks at the farthest endpoint from the
leaf node of the main chain. In the above example the farthest
is Data 6 (from Data1). It then calculate the number of flops
required to connect to each of the nodes. i.e., the number of
flops needed to branch from node 1 to Data6, node 2 to Data6
etc.
In the above example number of flops needed to reach Data6

- From node 1 is 5 (because we need to match the delay
between Data1 and Data6)

- From node 2 is 4.
- From node 3 is 3 etc.

This is calculation is done for all the destination endpoints.
While doing the calculation there may be cases that from a node
in main chain to Data6, it might take less flops than from that
node to Data1. These nodes should not be considered as it will
increase the delay for all the destination endpoints.
From the calculation, we find the node with least number of
flops required to reach Data6. If this node has children less than
the number of fanouts, then we add nodes till Data6, else next
node, with least number of flops, is considered. If it takes least
number of flops from node3, then the tree will look like below:

This process is repeated for all the destination endpoint till the
full tree is found.

Source
Endpoint

Destination
Endpoints

Data1

Data2

Data3

Data4

Data5

Data6MISC

1

2

3

4

5

6

4

5

6

Figure 5 Tree Optimizer Phase 2

Phase 3
In this phase we have a tree structure with root at MISC and 6
leaf nodes – Data1:6. Now we parse through the tree to
calculate the distance from the MISC to each node with
degradation in consideration for each node because of one flop
driving multiple endpoints. This distance is compared with the
actual distance from the floorplan. If any of the node’s
calculated distance (by parsing the tree) is less than the actual
distance (from floorplan), then the number of flops needed to
reach from MISC to that flop is increased and rerun the program
from Phase 1.

Figure 6: Tree Optimizer Phase 3 Output

So at the end of the Phase 3, we will get the most optimal tree
structure which is passed to Table 7 in excel. Then the excel file
is passed to RTL Code Generator. Refer Figure 6 for sample
Tree Optimizer output.

D. RTL Code Generator

The PERL based script takes the tree structure and serial
repeater count as input from Table 7 along with another tab in
the excel sheet which consists of signal level information as
shown in below snapshot.

Input signal
name

Input signal
type e.g.

logic,
struct_name

etc

Auto
generated

Output signal
name

Clock used to
flop repeat
input signal

One of the
predefined

signal
category

from Table7
for input

signal

Special Flop
Type

(OPTIONAL)
e.g. RST flop,

EN flop

Condition for
special flop

type

Option to
have

Additional
number of
stages the

user want to
relax for

input signal
on top of
Minimum
required
stages in
Table7

Auto
generated

Relaxed Tree
structure if
“Relaxation

Parameter” is
present

Input signal
width

Button to
generate

output signal
name

Button to
generate

Relaxed Tree

Figure 7 RTL Generator Utility

PERL script takes this excel sheet as input and generates an
RTL module with optimized number of repeater flops. It will

declare the input and output signals along with the intermediate
logic declaration of the interconnect signals for tree. It will also
assign the final stage tree outputs to the output ports. Below is
the snapshot of RTL generated for signal (Command_Enable)
mentioned in the excel sheet.

Figure 8: Sample of RTL generated for single signal

The beauty of this is whenever there is a change in the tree
structure (because of updated flop drive strength or change in
the position of one of the partition), the updated RTL will be
generated automatically with a click of a button. Designer
won’t have to go through the hassle of breaking the existing
connections to include updated repeater structure. If new
signals are added then integration of those will be required.
This will be applicable to all the signals going from one
partition to another. If the signal is travelling from source
partition to destination directly without any flops, it will be a
feedthrough signal. Such signal can be included in respective
signal category and will be taken care by simple assign
statement.

III. RESULTS

Following tree diagrams and tables show the comparison in
number of flops seen using traditional approach vs the new
automated approach mentioned in the paper.

A. Unoptimized Traditional Tree

1

2

5

6

10

11

9

4

8

12

3

7

Source
Endpoint

Destination
Endpoint 1

Destination
Endpoint 2

Destination
Endpoint 3

Destination
Endpoint 4

Destination
Endpoint 5

Figure 9 Un-optimized Tree Structure for a signal category Data1:N

Table 1 Number of flops without optimized tree

B. Optimized Tree

1 4

8

9

7

3 6

10

2

5

Source
Endpoint

Destination
Endpoint 1

Destination
Endpoint 2

Destination
Endpoint 3

Destination
Endpoint 4

Destination
Endpoint 5

Figure 10 Optimized Tree Structure for a signal category Data1:N

Table 2 Number of flops with Optimized Tree

C. Area Savings with New Automated Approach

Table 3 % Savings Calculation

The Optimization & Area savings increase as the HIP designs
 Become more complex and hence

floorplan/dimension increases.
 This causes the number of repeater stages to increase.

(time-consuming & error prone)
 Hence increasing the optimization brought in by Tree

optimizer utility.

IV. SUMMARY

This complete system, consisting of all 3 utilities, can be used
for multiple projects in Intel in which this kind of repeater flops
are required. With our solution we have designed a tool that

 Takes the floorplan information, distance from the
source module to the destination and single flop drive
strength as the input.

 Algorithmically finds out a tree structure with minimal
number of flops.

 Generates the optimal functional RTL FUB that is
ready to plug in.

The advantages of our solutions are:
 Less Area: This approach generates the least number

of flops needed for a given source endpoint to
destination endpoint. Thus area and flop delay are
optimized.

 Automated: It needs minimal manual effort and it
generates a functional RTL which is ready to plug-in.
Thus the development is faster, easy to use and less
prone to errors.

 Scalable: Adding new signals just requires adding the
corresponding fields in the input to the tool and rerun
the program again.

 Fast development: Using tool to generate automated
RTL, aids quicker development & faster simulation
readiness.

Optimized & automatic RTL, generated using the tool
described in this document, is being intercepted in one of the
Intel’s IPs.

ACKNOWLEDGMENT

We would like to thank Krishnamurthy B Venkataramana
and Rajeev Gopalan for motivating and guiding us to create this
system. We would like to thank Satheesh Pillai for letting us
know the challenges back-end team is facing to close the timing
on such module. We would like to thank Ryan Joseph who
provided us more insights of the problems encountered in such
module. We would like to thank Alex P Thomas, who is the first
user of this tool, for providing us valuable feedback which made
us improve our system. We would like to acknowledge the effort
of Aman Aggarwal, who had helped us to develop few VBA
macros for tool.

REFERENCES

[1] Eng Keong Teh; Mohamad Adzhar Md Zawawi ; Mohamed Fauzi

Packeer Mohamed; Nor Ashidi Mat Isa, "Access-Practical System-on-a-
Chip Flop Repeater Insertion with a Meta-heuristic Technique", 2018,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems

