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Abstract—MURA defects in LED/LCD panels are one of the 

most challenging defects for Automatic Defect Classification 

and Localization (ADC) due to their extremely low contrast with 

compared with the background. Manual detection is subjective, 

error prone, very tedious and time consuming. Even when the 

type of MURA defects can be ascertained manually the exact 

bounding box for defect is hard to determine. Various heuristic 

based image processing technique have been applied giving sub-

optimal accuracy over generic datasets. Moreover for each 

defect, type different processing pipeline had to be designed. In 

this paper we present a single DL pipeline for classification and 

localization, which is first of its kind for MURA defects. Using 

optimization techniques that are from both DL field as well as 

specific to MURA domain, we show improvement in the 

accuracy of the base DL pipeline from ~30% to ~80%.  

Keywords—MURA defect, Automatic Defect Classification 
and Localization, Deep Learning (key words) 

I. INTRODUCTION 

MURA (Japanese origin) also called blemish or stain 
defect is very common in any panel manufacturing 
(OLED/LED/LCD etc.). The defect has peculiar 
characteristic of having extremely low contrast with the 
background, making it very difficult to see through naked 
human eye. MURA defects can range from very small (few 
pixels) to very big (almost covering entire panel). Due to their 
low visibility, they are sub-classified mainly according to the 
backend manufacturing process information (correlation to 
backend manufacturing process) rather than visual 
information obtained from defect. Hence, defects from 
different MURA sub-classes can look similar visually. 
Moreover depending upon the panel manufacturing process, 
MURA defect classes can differ and no standard MURA 
defect classes exist. This also makes it difficult for any 
existing generic classification and localization pipeline to 
perform robustly for diverse datasets and hence 
domain/dataset specific optimizations have to be applied. 
Nevertheless, the correct classification and localization of 
MURA defect classes have significant monetary impact for 
panel manufacturing process by means of reducing root cause 
analysis time and increasing overall yield due to the 
correlation to manufacturing mentioned above.  

 Typically for detecting MURA defects for 
OLED/LED/LCD panels, images are captured in different 
wavelengths of light and then passed on to a learning system 
for automatic detection and classification. This is done to 
make the defects more visible in some cases; but it’s still very 

difficult to differentiate between the defect and background 
with naked eye. Illustrative examples of a few types of 
MURA defects are given in [1]. As can be seen therein, the 
defects appear as low-contrast, non-uniform brightness 
regions and they are typically larger than a single LCD pixel. 
Additionally, multiple defects of different types can occur 
simultaneously as well as multiple times in a single image. 
So correct classification and localization of every defect in 
the panel is very important to know all the root causes 
responsible for defects. In our dataset there are 4 types of 
MURA defect (Note due to confidentiality we cannot show 
the real defect images here but described defect by text 
below). Type 0 and 1 are similar looking defect known as 
patch defect usually small in size and differ only by the 
location where they occur in panel. Type 1 defect only occurs 
at edges, whereas Type 0 can occur anywhere in panel. Type 
2 defect is big defect also referred to as skin peel or skin rash 
defect due to weak visual similarity to skin peel or skin rash. 
Type 3 is very small defect known as spot or point defect and 
they occur with very high probability density. 

Recently Deep Learning (DL) based pipelines have 
become state of the art for various recognition and object 
detection tasks. Naturally DL can be thought as a promising 
approach for MURA defect classification and localization as 
well. State of the art DL classification and localization 
pipelines however are trained and tested over normal objects 
of day to day occurrence which have some visual constraint 
over shape and size like bus, train, people etc. As discussed 
above, it is not true for MURA defects; their classification is 
more correlated with the manufacturing process compared to 
their appearance. So directly applying standard DL methods 
tor MURA is unlikely to give good results.  

TABLE I.  CUSTOM F1 SCORE 

  Predicted Class 

Actual Class Type A Other 

IOU >0.5 <0.5 >0.5 <0.5 

Type A  TP
A

  FP
A

 , FN
A

 FP
other

 , FN
A

 FN
A

 , FP
other

 

Other FP
A

 , FN
other

 FP
A

 , FN
other

   TP
other

 FN
other

 , FP
other

  

 

In this paper we present a DL pipeline inherited from 
state-of-the-art DL pipeline for classification and localization 
of normal objects (from MS COCO, PASCAl VOC 2012, 
2007 etc.) and optimized with domain specific knowledge to 
get high accuracy for MURA defects. For final metric we 



define custom F1 score and report it per defect as well as for 
overall test set. Table I. show the custom F1 score metric used 
in this paper, where Intersection of Union (IOU), True 
Positive (TP), False Positive (FP), True Negative (TN) and 
False Negative (FN) are shown in abbreviated form. Type A 
is any MURA defect class for which F1 score is calculated. 
Overall F1 score can then be simply calculated by summing 
TP, TN, FP and FN over all MURA defect classes. Our 
dataset consists of 4 MURA defect classes. We have deviated 
from the standard mean average precision (MAP) reported in 
related literature for quantifying the quality of DL pipeline 
because the manufacturing yield is also dependent on recall; 
bad recall can lead to un-necessary tuning of process step 
parameters thus affecting the manufacturing yield.  

Lastly, the contribution are twofold:- 

 We present the first application of DL for MURA 
defect classification and localization. We also define 
minimum heuristics (no tunable thresholds) pipeline 
which is much easier to adapt for newer MURA 
dataset (OLED/LED/LCD). Whatever minimum 
heuristic is defined comes from inspection process 
setup (specifically the different wavelengths used for 
imaging) which can be common across different 
MURA dataset. 

 We present technique for re-using state-of-the-art DL 
pipeline for classification and localization trained on 
normal objects. We rely heavily on Transfer Learning 
(TL) concept and process by fine-tuning the inherited 
DL pipelines for our dataset. Some part of domain 
specific optimization techniques described here can 
be applied to any DL pipeline. So as state-of-the-art 
DL pipeline improves for normal objects, they can be 
directly plugged in for improved accuracy for MURA.   

 Throughout this paper, although we disclose results for 
real MURA defects, we will use publicly available images for 
illustration purposes. This is done in order to preserve the 
confidentiality of sensitive data. The rest of the paper is 
organized as follows. Section II gives overview of the related 
work in the field. Section III contains detailed explanation of 
proposed pipeline while the results are presented in section 
IV. 

II. RELATED WORK 

A. Literature survey for MURA defect inspection 

There are several electrical and vision based inspection 
techniques available for MURA defect inspection [2]–[8].  

In TFT-LCD the voltage-imaging technique measures the 
characteristics of a LCD array by directly measuring the 
actual voltage distribution on the TFT pixels. However, 
probes used for voltage measurement must be separately 
designed for each panel configuration. In vision-based 
techniques, Song et al. [2] developed a wavelet based method 
to detect the MURA defects in low-resolution LCD images 
that involve non-textured surfaces. Lu et al. [3] applied the 
Independent Component Analysis (ICA) to detect defects in 
patterned LCDs. These approaches define hand-crafted 
heuristics and thresholds which had to be separately designed 
for different MURA defects. To overcome this limitation 
traditional machine learning (ML) approaches have also been 
applied. Liu et al. [4] used the Locally Linear Embedding 
(LLE) to extract image features and then applied Support 
Vector Machine (SVM) for classification without 
localization. To perform localization Kim et al. [5] used 
adaptive multi-level defect detection and probability density 

estimation for TFT-LCD inspection. Lin et al. [6] presented 
an image processing method for defect detection in TFT-
LCD images and used genetic algorithm (GA) for adjusting 
heuristics automatically. Ngo et al. [7] also presented an 
automatic detection method for MURA by accurate 
reconstruction of the background by training separately on 
the background but using test set images of MURA. In non-
ML based method, Du-Ming Tsai et al. [8] used Fourier 
transform based technique to remove the repeated patterns in 
background and then used adaptive threshold to perform 
defect segmentation. These traditional ML and non-ML 
methods, though successful in some cases, fail to adapt 
successfully to more generic datasets. 

DL techniques have also been applied for MURA defect 
classification. Hua yang et al. [1] applied TL and deployed an 
Extreme Learning Machine (ELM) for online MURA defect 
classification with impressive results. DL methods for both 
classification and localization of defects have been applied 
for defects other than MURA. Liu Ri-Xian et al. [9] applied 
Deep Belief Network (DBN) as goodness of fit for defect 
identification in capsule and solar cells. Adaptation of DL in 
MURA domain is still limited mainly due to scarcity of 
public datasets. Even when in-house dataset is available, the 
number of training images are usually less as individual 
images have to be manually labelled. Additionally, due to low 
contrast of defects, manual labels are also not very reliable.  
Our work overcomes these limitations by utilizing state-of-
the-art DL pipelines trained for normal objects and modifying 
them appropriately for MURA datasets containing small 
number of images. The authors are of the opinion that this 
will facilitate widespread usage of DL in MURA domain. 

 

 

Fig. 1. Literature Survey for state of art DL for normal object detection 

[12]. (2017. Recent new state of art DL networks has come but they 

can fit directly here in this paper) 

B. Literature Survey of state of art DL pipeline for normal 
object detection 

For normal object classification and localization, DL 
techniques have outshined other techniques in terms of 
performance. MS COCO, Pascal VOC 2012, 2007 are some 
of the challenges in this area where DL techniques have 
consistently occupied top position in recent years. Literature 
survey reveals two major variants of DL pipelines being used 
in this area: single stage and two stage. In single stage 
classification and localization happens in a single pipeline 
whereas in two stage variant two separate pipelines are used. 
First pipeline gives object proposals and second pipeline 
performs classification and localization over the predicted 
proposals. The pipelines can be trained simultaneously or 
separately. Fig. 1 shows a consolidated view of speed vs. 
accuracy for different pipelines. An apparent trade-off is 



visible for the two categories of performance evaluation. In 
next section we will present the base DL network pipeline 
from which our final DL pipeline (working on MURA defect 
dataset) is inherited. 

 

III.  PROPOSED DL PIPELINE FOR MURA  

 

 
Fig. 2. Single stage and Two stage DL networks 

A. Choosing Base DL Pipeline  

We tried both single stage and two stage DL based 
classification and localization pipelines to choose the base 
network. In single stage we tried Single Shot Detector (SSD) 
which also encompasses YOLO [10] and for two stage we 
tried variants of Faster Region Convolutional Neural 
Network (Faster RCNN). Fig. 2 illustrates the two said 
pipelines. Faster RCNN performed poorly than SSD in 
default training configuration particularly because of the low 
performance of Region Proposal Network (RPN). Overall F1 
for Faster RCNN was ~10% while that for SSD was ~30%. 
As MURA defects don’t have well-defined boundary that 
segregates them from the background, RPN fails to learn the 
foreground object pattern and gives low quality proposals 
which affect the overall accuracy of the Faster RCNN 
pipeline. Comparatively, the dense proposal matching in case 
of SSD performs better. Training with only MURA dataset of 
344 images was insufficient especially given the depth of the 
pipelines. Typically, dataset of the size of ImageNet is 
required for training such deep networks. So we utilized the 
TL concept: for feature generation in both the pipelines we 
used the pre-trained weights from detection pipeline trained 
on ImageNet. Only the last block of feature network was fine-
tuned over our dataset. We tried with pre-trained weights of 
VGG16 [13] and RESNET 51 [14], both giving almost equal 
score with RESNET performing marginally better (~1%) but 
at the cost of increased training time. So for our base model 
accuracy we selected SSD with pre-trained VGG 16 [14] 
which give combined F1 score of ~30%.  

B. Modified DL Pipeline for MURA inspection  

To increase accuracy of base network we applied many 
optimization strategies which can be broadly divided into 
network specific and domain specific. In next paragraph we 
discuss network specific optimizations followed by domain 
specific optimizations in subsequent paragraph. Note that 
network specific optimization is specific to state-of-the-art 
network chosen as base (SSD for this paper). Domain specific 
optimizations are independent and can be applied to any new 
DL pipeline. 

 

Fig. 3. Pseudocode for modified standardization used as pre-processing 

For network specific optimization we modified two 
things:-  

 Loss Function Optimization:- 

 The SSD pipeline uses multi-box loss for training. 
In multi-box loss the loss gradients are applied only to the 
overlapping boxes (the proposal box having greater than 
0.5 overlap with GT) and equal number of non-
overlapping boxes randomly chosen from all the 
proposals. This accounts for less than 1% of boxes being 
trained per batch. This causes training to be slow and also 
many of the boxes remain un-trained even after the 
training process (mainly due to low training set size of 
about 344 images compared to millions of images in 
ImageNet). We changed the multi-box loss with weighted 
loss where all the proposal are simultaneously trained 
with loss gradient, which get proportionately divided 
between overlapping and non-overlapping boxes as per 
the ratio of their count. This results in improvement of F1 
score on test set by ~10%.   

 Generic network optimization:-  

 Further improvement of the base network was 
performed by employing following techniques: 
regularization using as dropout, adding batch 
normalization to control the variation between layers and 
augmenting training dataset to 4x by using generic 
modifications such as image flip. These actions resulted 
in improvement of test F1 score by additional ~10%. 

For domain specific optimization we perform following:-  

 Image pre-processing:-  

 We tried pre-processing steps to specifically 
increase contrast between defect and background. Fig. 3 
shows the pseudocode for modified standardization 
which was found to increase the contrast between the 
defects and background the most. This preprocessing 
method increased the F1 score by additional ~10%. 

 

 

 

 

 



Fig. 4. Depicting the general optmization strategy followed in this paper (top). Final DL Network used for MURA dataset (bottom). 

 

Fig. 5. Crop and Combine data augmentation technique 

 Domain specific data augmentation:-  

 In our dataset defects of type 0, 1 and 3 (especially 
type 3) are small defects compared to panel image size 
whereas type 2 is much bigger defect. So we define a pre-
processing step exclusively for small defects which we 
call as crop and combine as illustrated in Fig. 4. We 
perform ordered crop and during training we supply only 
those crops which contain defect. However during testing 
we supply all the crops in ordered fashion and perform 
concatenation of the result. This techniques increases the 
F1 score of smaller defects (especially for Type 3 which 
was more than ~10% increase) but decreases score for the 
bigger defects. Overall Score increased marginally by 
~5% as our dataset contained more number of smaller 
defects. 

 Ensemble Network: -  

 Due to large correlation of MURA defect classes 
with background manufacturing steps, defects from 
different classes may appear similar. We observed this 
empirically as well; the trained DL network gets confused 

with similar looking defects. So we divided the network 
into separate networks; each network detecting different 
class of similar looking defect. Also as crop and combine 
technique (figure 4 above) can only be applied to small 
defects, we trained separate networks for bigger and 
smaller defects as well. We trained an ensemble of three 
networks as shown in Fig. 5: first network trained for type 
0 and 1, second network trained for type 2 and third 
network trained for type 3. Note that even though type 0 
and type 1 look similar, network didn’t confuse between 
them because type 1 only appeared at edges of the panel 
image. During testing we passed test images to all the 
networks and consolidated the output. Each network 
performed better individually (~5% increase) on their 
specific test sets containing only the defects for which 
they were trained; however the overall score decreases by 
~5% due to increase in false positive cases (especially for 
the case when test image of defect was supplied to 
network which was trained for other defect).  

TABLE II.  WAVELENGTH FILTERING 

MURA Defect Class Wavelength Rule 

Type 0 All wavelength except 
wavelength index 0 

Type 1 Only wavelength index 1 

Type 2 Only wavelength index 2 

Type 3 Only wavelength index 0 

 

 Wavelength based filtering before final prediction 
(Information specific to Inspection Setup 
instrument):-  

 In our dataset all defects (type 0, 1, 2 and 3) are 
provided in different wavelength. We empirically learnt 
from our training history (past train F1 Scores) that for 
each defect class, input images corresponding to certain 
wavelengths result in improved performance of the DL 
network. With this information we created a rule based 



filter (shown in table II) using the wavelength of input 
image and added it just before calculating final metric in 
our ensemble network setup. Thus, as per the rule in table 
II, DL network prediction of type 0 on any input 
wavelength image other than 0 would be trusted. The 
resulting ensemble network with this filtering technique 
increased overall F1 score by about ~30% giving the 
overall final score of ~80%. This huge increase in score 
depicts the importance of domain specific knowledge 
especially in case of MURA defects. 

 

IV. RESULTS AND CONCLUSION 

Our in-house MURA dataset consisted of 344 images as 
already mentioned. We performed 5 fold cross-validation on 
our dataset as well as for each fold we ran train and test 
evaluation for 5 times. This is to ensure that we average out 
any effect due to random initialization of parameter. Due to 
large time in training we did not integrate hyper-parameter 
tuning to further increase the final F1 score. We fixed the 
training epoch to 100 and saved model state after each epoch. 
For reporting metric we take mean of the 25 F1 values as well 
as the standard deviation of the same. Table III shows the 
result summary. One can also see how the F1 score changes 
with induction of additional analysis methods. 

TABLE III.  RESULT TABLE 

Dataset (MURA 
(1480X720)(344 
images) 

F1 Score (Table 1) in 
percentage on 20% test 
split. Reported = mean 
score (standard deviation) 

Processing Time in 
milli-sec (ms) 

Base Network 
(SSD) 

(1 model to train) 

 

Type 0=11.53 (1.32) 
Type 1=10.71 (0.64) 
Type 2=83.86 (1.40) 
Type 3 = 7.24 (2.20) 
Overall=30.51 (2.66) 

 

Training:- 30000 
ms/epoch 

Test:- 50 ms/image 

++
a
 generic 

network 
optimization 

(1 model to train) 

 

Type 0=36.66 (6.32) 
Type 1=44.87 (2.09) 
Type 2=74.11 (1.87) 
Type 3 = 34.17 (9.79) 
Overall=42.94 (5.26) 

Training:- 30000 
ms/epoch 

Test:- 50 ms/image 

++
a
 Image prep-

processing 
(1 model to train) 
 

Type 0=55.89 (3.30) 
Type 1=57.08 (3.32) 
Type 2=98.89 (1.53) 
Type 3=30.61 (4.27) 
Overall=57.79 (5.12) 
 

Training:- 30000 
ms/epoch 
Test:- 50 ms/image 

++
a
 Domain 

specific data 
augmentation 
(1 model to train) 
 

Type 0=59.46 (2.58) 
Type 1=66.42 (2.80) 
Type 2=82.54 (2.28) 
Type 3=40.38 (3.42) 
Overall=61.17 (3.86) 
 

Training:- 30000 
ms/epoch 
Test:- 50 ms/image 

++
a
 Ensemble 

Network 
(3 models to train) 
 

Type0=73.56 (7.85) 
Type1=70.44 (5.60) 
Type2=96.76 (5.26) 
Type3=66.44 (6.69) 
Overall=56.18 (4.86) 
 

Training:- 70000 

ms/epoch
b
 

Test:- 150 ms/image 

++
a
 Wavelength 

based filtering 
before final 
prediction  

(3 models to train) 

 

Type 0=72.68 (3.81) 
Type 1=99.32 (2.03)  
Type 2=98.65 (2.11) 
Type 3=85.88 (3.94) 

Overall=81.98 (1.98) 

Training:- 70000 

ms/epoch
b
 

Test:- 150 ms/image 

a. Denote increment to previous model state. 

b. With multi GPU this can be performed parallel to reduce time further. 

 

We have thus demonstrated results for classification and 
localization of MURA defects using state-of-the-art DL 
network with F1~80%, which is the best result of any that are 
reported for this purpose. The pre-processing steps and the 
network design employed can form the basis for future work 
in this field. Due to sensitive nature of MURA data, in this 
paper we could not add actual prediction result images of our 
pipeline over test-dataset. 
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