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    Abstract--- Application Specific Instruction-Set Processors 

(ASIPs) achieve high performance and flexibility, by using 

specialized instructions implemented in C-programmable 

custom hardware functional units (FUs). Typically, the 

instruction set is formally represented in a high-level language 

like C and custom hardware is implemented in RTL with 

several optimizations necessary for practical silicon 

implementation, like resource sharing, pipelining etc. Verifying 

functional correctness of the RTL implementation through an 

automated process is hence challenging task, which becomes 

even more difficult if the input space for each instruction is 

very large. In this paper, we describe an automated framework 

which we have developed for constrained-random functional 

verification of custom FUs for an application-specific SIMD 

processor with n-bit (n in order of 1000’s) wide data path 

which has been instrumental in finding bugs in RTL 

implementation of instructions. We are currently working on 

extending this process to use formal techniques for more 

comprehensive data path verification. 
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I. INTRODUCTION 

Intel Custom Processor Design Tools platform enables 

development of the ASIP with Custom Instructions. The RTL 

abstraction of the instructions are specified in Functional Unit 

modules (FU). The same information is passed to the tools in 

specific language formats to describe the core and system (TIM 

and HSD). Once the FU RTL, TIM (Timing Map) & HSD are 

available, the Processor Sub System RTL can be generated for the 

custom configuration. The TIM has the timing information and 

availability of operands/results on inputs/outputs and their widths. 

The RTL for FU have both the functional and the timing intent of 

the instruction. The custom Functional units with instruction 

implementation are instantiated in one or many instruction issue 

slots of the processor core. HSD format has the information of how 

the functional unit is connected in an issue slot of the processor, 

with the register files and memories. The compiler supports the 

scheduling of the custom instruction set with information available 

in the TIM and HSD Formats. As these instructions are user 

defined, there was no automated way of generating validation 

collaterals in the Custom Processor Design Tool Flow. 

In our product line we use the Custom Processor Design tools to 

build processors for all the DSP applications.  

For any processor verification it is important to bridge the gap 

between the HW and SW. Because of the complexity in the 

software applications, we can’t wait until the hardware prototype 

is  

ready to verify the software application. Because of the complexity 

in the application SW development, SW teams usually work on 

Processor Independent (PI) emulation C models. As shown in 

Figure 1 the same instruction set is defined in multiple formats in C, 

RTL and TIM. PI C models just have the functional abstraction of 

the Instruction.  The Timing information is available in other design 

abstractions. 

The challenges for a verification team for the closure of verification 

and developing the test bench are 

• To check the coherency between all these design 

expressions (C, TIM, RTL, HSD) for same instruction 

set.  As shown in Figure 1, the RTL verification flow 

should bridge the gap between the SW verification and 

Tool Generation flows. 

• Sanity of the Operand/Result connections with the input 

and output in TIM/HSD. 

• Need to avoid manual test bench, test case changes for 

the FU RTL changes related to the instructions, 

instruction grouping, opcodes, pipeline stages, cycle 

availability of each operand and result. This is must 

during HW& SW Co-design phase. 

• All the information required on the instruction grouping, 

instruction availability in a FU, Time shapes, opcode of 

the instruction, mapping of the operand and result are not 

available at one place until the processor core is 

generated by the Processor Tools until the core is 

generated with the custom Functional Units.  

• Check sanity of the C and SV abstraction of the 

instruction in the System Verilog test bench. 

• The data path is so huge and hence the C data types used 

are complex union of the structs. Which don’t have an 

equivalent in System Verilog to enable DPI Checks.  

Extracting port widths from the generated cores and 

mapping them with C data types for the DPI checkers.  

• Random verification environment generation for each 

custom Functional Unit for any custom processor. 
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Figure 1 SW Verification and Processor Tool Flow 

 

There are some limitations for the industry standard 

formal tools on the dynamic memory allocation. The formal tools 

don’t generate waveforms for passing case and generate only for 

the failing cases.  They also have limitations using of very wide 

complex data types and string data types. There are also some 

limitations on the VHDL Language support for the formal Tools. 

So, any infrastructure built to support formal verification also have 

same limitations while writing the lemmas(properties) and 

constraints when the core is evolving as per application. So, the 

infrastructure built for automation and extraction of the 

information from the generated RTL core should be used to 

generate formal verification test benches. This environment should 

support initial control path data flow flushing for later use of 

Formal data path techniques. 

II. FU TB Environment 

The Block diagram of the FU is as shown in Figure 2. An 

FU can have any number of inputs and each having different 

widths. The max input operand width defines the max data path 

width.  It can have any number of outputs of varied widths. Each 

output has an associated output valid strobe.  The number of clocks 

pins and ip_stage_en* pins define the number of pipeline stages in 

the FU. Operation_type port defines the input opcode. The 

Functional unit can contain any number of instructions and the 

grouping is done as per the application. Each instruction can have 

one or many operands and results. The Time shape of the 

instruction defines the number of cycles taken by the instruction to 

finish and availability of operands and results on the input /output 

ports. It is not required for all the operands to be available in same 

cycle. The operands can be available on any port or same port. This 

applies to results ports on outputs of FU. Next instruction cannot 

be scheduled on the FU if the previous instructions have conflict 

on the ports for operands and results. An instruction time shape 

doesn’t require to be same as another instruction time shape in the 

same Functional unit. 

To build a test bench infrastructure for a custom Functional Unit of 

an ASIP, we need a UVM based environment which can generate 

constraint random stimulus and automated way of checking C 

models with the RTL implementation.  The PI C models are 

integrated with the SV test bench with DPI headers and integrated 

into the checkers 

 

Figure 2 FU Block Diagram 

  

So, initially we developed a frame work of templates for 

all the test bench, parameters, SV UVM Constraints, Monitors, 

Drivers, Sequence Libraries Test cases, file list, compile scripts, 

DPI Wrappers for each instruction, DPI Verilog Header files for 

imports and Instruction Checker Class. Then all the files mentioned 

are generated using the Python and Perl Scripts from the 

information extracted from the processor core generated xml files 

as shown in Figure 3. 

 

 

Figure 3 Verification Collaterals from Automated Flow 

 

These generated files along with common test bench components 

driver, monitor and sequencer will create a generalized FU 

environment. The environment framework for a FU is as shown 

below in Figure 4. 

From the generated core from the Processor Tools, below 

information is extracted using the scripts and passed in different 

formats for the SV TB to parse.  

▪ Number of Inputs and Outputs of the FU and the Widths 

of each port. Remember FU can have operands and 

results of any width. 

 



 

Figure 4 FU TB Environment 

▪ Mapping of Operands and Results of an instruction in a 

FU with its subset of input and output ports 

▪ Grouping of the instruction set to generate a FU DPI 

Checker with multiple DPI calls as per the instruction 

opcode. Instruction opcodes are machine generated and 

are assigned to instructions in the FU by tools. 

▪ Time shape of the instruction (Cycle Availability of the 

instruction Operands and Results) 

▪ Information of operands or results sharing same port 

▪ Number of Pipe line stages in the FU. 

As all this information is extracted from the generated core xml 

files and so it bridges the gap between multiple definitions of the 

instruction behavior. This is the same information available for the 

compilers to schedule the instructions. 

Instruction description is specified in an excel sheet by designers in 

a pre-defined format. This excel sheet (is used to generate operand 

constraint files for each instruction. Excel sheet per FU as shown 

in Figure 5. This document is used to generate the test cases, user 

constraint library and operand structs as shown in Figure 6. There 

are macros available in the sheet which the scripts parse to generate 

constraints an operand. The same excel sheet would be used to 

generate a word documentation using the scripts. 

 

Figure 5 Instruction Documentation in Excel Sheet 

In the UVM environment in Figure 4, lies an Operation Database 

which is built using System Verilog Dynamic memory objects 

which has all the information about the Instructions (operands, 

results, cycles, port mapping etc.). This is database has information 

of opcodes generated, operands and time shapes all instructions in 

that FU.   

 

 

 

Figure 6 Generated Operand SV Struct Data types 

 

This database is extracted automatically. As shown in Figure 7, each 

opcode of an instruction has an entry. In this case the instruction 

OP_ADD has two operands and two results. The results are on 

cycle 3 and inputs are on cycle 0 on different ports. This 

information is fed both to the driver, monitor and instruction 

scheduling sequencer. This will enable instruction scheduling 

without any resource (port/cycle) conflicts from the sequencer. The 

parameterized driver gets information of all the port widths and the 

cycle in which an instruction operand/result should be driven or 

sampled. A UVM based cycle accurate model samples the inputs 

and outputs as per the instruction time shape and passes 

information to the instruction DPI checker. The instruction checker 

is a generated class that subscribes to the data coming from the 

monitor and calls instruction PI C models using the DPI. The RTL 

results are   then compared with the C model results. 



 

Figure 7 Generate Operation Database Entry 

 

The environment also generates directed random tests, sequence 

library for each instruction. The environment provides hooks to run 

the vectors generated from a C only simulation on the RTL. It 

provides hooks to the designers to write tests in the High-Level 

String format. Internal text parser in the environment is capable of 

generating the random stimulus to any instruction as per the string 

commands. This will enable the designer to try out some tests 

without any knowledge on UVM or constraint-based testing. The 

designer can give a simple text file as shown in Figure 8, with a 

command and pass what values he want on an operand of 

instruction. The text parser supports strings for random, random 

negative, random positive, negative/positive max/min, same data 

as earlier cycle, negative one etc. 

 

Figure 8 High Level Random Tests for Designers 

As already mentioned the data path for the instructions is wide and 

operands have a mix of the scalar, vector data (n x scalar data 

width). In C, complex union of structs are defined in the function 

arguments. In RTL these correspond to a bit arrays. To pass this 

data into DPI functions we used lowest byte level abstraction of 

arrays in the monitor to keep the monitor generic for any operand 

or result port widths. To pass these byte arrays into the DPI C 

functions, we used svOpenArrayHandle data types as shown in 

Figure 9 SvArrayHandle in DPI wrappers. For every instruction, 

wrapper functions are generated. These convert the 

svOpenArrayHandle data types into the struct data types used in 

the function. For all the scalar data types standard equivalent SV 

data types are used. To achieve the automation of the DPI 

wrappers, we needed to enforce the C coding guidelines on using 

consistent data type for a particular data bit vector width in RTL.  

The function port argument ordering in the C functions and the 

arguments in the TIM instruction specification needed to be 

matched. The function names in the C models needed to be 

matched with instruction semantic names in the compiler. This 

enabled the automation of the DPI headers, DPI imports and 

checkers. DPI checkers ensure cycle accurate checking of any 

random instruction. 

 

Figure 9 SvArrayHandle in DPI wrappers 

The same environment is also used to support the Load Store Unit 

verifications which interface the memories. This environment is 

particularly very useful for the verification of the memories along 

with the FU and doesn’t need any formal data path verification. 

The challenges of the instruction evolving do exist in the Load 

Store Units. 

The FU agent environment is then used in the Processor level 

environment in PASSIVE mode to check at Processor level with 

multiple agent instantiated. All the agents in the processor level can 

be grouped to check instruction scheduling in full core. The 

random constraints generated per custom instruction can also be 

used for random assembly or c code generation at processor level. 

  

RESULTS 

The environment was used in verification of the SIMD instruction 

FUs of the vector processor. Once the RTL for a particular FU was 

developed, basic automated verification of all instructions was 

completed within one hour. This is at least one-week reduction in 

man hours required to set up an initial test bench. This also results 

in the saving of many man hours to maintain the TB and test cases 

when the design is changing. This provides early access to Random 

verification infrastructure for designers. And is friendly to 

designers who may not have system Verilog verification expertise. 

Easy access to high level testcases and directed tests creates chance 

to do directed stress validation of a particular instruction. Lot of 

directed testing helped in finding bugs in SIMD Functional Units 

in both C and RTL. Close cross-BU collaboration between the 

verification team and Processor tool teams has helped this 

automation infrastructure to be adopted into the Processor tool 

Flow.  

 

Future work: This automation frame work is being used to 

develop templates for data path Formal verification Tools. We are 

currently evaluating Formal tools for data path convergence. 

Automation of the instruction set verification, along with formal 

techniques would help in coverage closure of the 60% of the SoC, 

as there are 20+ such processors in the chip. There are plans to use 

the instruction level constraints for grand random C program 

generation at processor level and FU instruction level testcases and 

environment agents to be re-used in processor level test bench. 

Which will uncover issues early in the stage which may/may not 

be exposed by compiler/application or c limitation. 

 



 

SUMMARY 

Using the automated frame work to develop the Functional Unit 

test bench  

− Minimizes the manual verification collateral changes when 

the instruction set is evolving during HW & SW Co-

Design. 

− Closes the gap between HW and SW validation of the 

instruction set. 

− Is in line with the shift left and production worthy A0 

silicon approaches. 

− Creates frame work for the Formal Data path verification 

support. 

− Enables the possibility to validate behavior of group of 

instructions to form a macro operations in the FU test 

bench. This particularly is not possible in data path formal 

tools as they expect C model for full macro operations. 

− Single push button flow to generate multiple test benches 

for different FU and reduces multiple man hours required 

to setup a TB for custom FU and thereafter to maintain. 

− Closure of verification of different abstractions of same 

design across and integration of verification with 

application generated vectors from C is achievable. 

− Ease of access to environment for designers to validate 

complete control data of the instruction using the FU TB 

and can rely on data path formal tools for exhaustive data 

path coverage. 

− The FU TB agents generated can be re-used at the top level 

and will be used to compare the schedule of the compiler 

with actual RTL schedule. 

This approach can also be used for any chip which also uses 3rd 

party ASIP IP that support custom instruction set. 
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