
Automation of Verification for Application
Specific Instruction Set Processors

Sreenivas Machavaram, Chaithanya Kolikipudi, Milea Tal, Parakalan Venkataraghavan

(email: sreenivas.machavaram, chaithanya.kolikipudi, tal.milea, parakalan.venkataraghavan) @intel.com

 Abstract--- Application Specific Instruction-Set Processors

(ASIPs) achieve high performance and flexibility, by using

specialized instructions implemented in C-programmable

custom hardware functional units (FUs). Typically, the

instruction set is formally represented in a high-level language

like C and custom hardware is implemented in RTL with

several optimizations necessary for practical silicon

implementation, like resource sharing, pipelining etc. Verifying

functional correctness of the RTL implementation through an

automated process is hence challenging task, which becomes

even more difficult if the input space for each instruction is

very large. In this paper, we describe an automated framework

which we have developed for constrained-random functional

verification of custom FUs for an application-specific SIMD

processor with n-bit (n in order of 1000’s) wide data path

which has been instrumental in finding bugs in RTL

implementation of instructions. We are currently working on

extending this process to use formal techniques for more

comprehensive data path verification.

Keywords---- Verification, Instruction Set, ASIPs, Automation,

HW & SW Co-Design, UVM, System Verilog

I. INTRODUCTION

Intel Custom Processor Design Tools platform enables

development of the ASIP with Custom Instructions. The RTL

abstraction of the instructions are specified in Functional Unit

modules (FU). The same information is passed to the tools in

specific language formats to describe the core and system (TIM

and HSD). Once the FU RTL, TIM (Timing Map) & HSD are

available, the Processor Sub System RTL can be generated for the

custom configuration. The TIM has the timing information and

availability of operands/results on inputs/outputs and their widths.

The RTL for FU have both the functional and the timing intent of

the instruction. The custom Functional units with instruction

implementation are instantiated in one or many instruction issue

slots of the processor core. HSD format has the information of how

the functional unit is connected in an issue slot of the processor,

with the register files and memories. The compiler supports the

scheduling of the custom instruction set with information available

in the TIM and HSD Formats. As these instructions are user

defined, there was no automated way of generating validation

collaterals in the Custom Processor Design Tool Flow.

In our product line we use the Custom Processor Design tools to

build processors for all the DSP applications.

For any processor verification it is important to bridge the gap

between the HW and SW. Because of the complexity in the

software applications, we can’t wait until the hardware prototype

is

ready to verify the software application. Because of the complexity

in the application SW development, SW teams usually work on

Processor Independent (PI) emulation C models. As shown in

Figure 1 the same instruction set is defined in multiple formats in C,

RTL and TIM. PI C models just have the functional abstraction of

the Instruction. The Timing information is available in other design

abstractions.

The challenges for a verification team for the closure of verification

and developing the test bench are

• To check the coherency between all these design

expressions (C, TIM, RTL, HSD) for same instruction

set. As shown in Figure 1, the RTL verification flow

should bridge the gap between the SW verification and

Tool Generation flows.

• Sanity of the Operand/Result connections with the input

and output in TIM/HSD.

• Need to avoid manual test bench, test case changes for

the FU RTL changes related to the instructions,

instruction grouping, opcodes, pipeline stages, cycle

availability of each operand and result. This is must

during HW& SW Co-design phase.

• All the information required on the instruction grouping,

instruction availability in a FU, Time shapes, opcode of

the instruction, mapping of the operand and result are not

available at one place until the processor core is

generated by the Processor Tools until the core is

generated with the custom Functional Units.

• Check sanity of the C and SV abstraction of the

instruction in the System Verilog test bench.

• The data path is so huge and hence the C data types used

are complex union of the structs. Which don’t have an

equivalent in System Verilog to enable DPI Checks.

Extracting port widths from the generated cores and

mapping them with C data types for the DPI checkers.

• Random verification environment generation for each

custom Functional Unit for any custom processor.

mailto:parakalan.venkataraghavan@intel.com

Figure 1 SW Verification and Processor Tool Flow

There are some limitations for the industry standard

formal tools on the dynamic memory allocation. The formal tools

don’t generate waveforms for passing case and generate only for

the failing cases. They also have limitations using of very wide

complex data types and string data types. There are also some

limitations on the VHDL Language support for the formal Tools.

So, any infrastructure built to support formal verification also have

same limitations while writing the lemmas(properties) and

constraints when the core is evolving as per application. So, the

infrastructure built for automation and extraction of the

information from the generated RTL core should be used to

generate formal verification test benches. This environment should

support initial control path data flow flushing for later use of

Formal data path techniques.

II. FU TB Environment

The Block diagram of the FU is as shown in Figure 2. An

FU can have any number of inputs and each having different

widths. The max input operand width defines the max data path

width. It can have any number of outputs of varied widths. Each

output has an associated output valid strobe. The number of clocks

pins and ip_stage_en* pins define the number of pipeline stages in

the FU. Operation_type port defines the input opcode. The

Functional unit can contain any number of instructions and the

grouping is done as per the application. Each instruction can have

one or many operands and results. The Time shape of the

instruction defines the number of cycles taken by the instruction to

finish and availability of operands and results on the input /output

ports. It is not required for all the operands to be available in same

cycle. The operands can be available on any port or same port. This

applies to results ports on outputs of FU. Next instruction cannot

be scheduled on the FU if the previous instructions have conflict

on the ports for operands and results. An instruction time shape

doesn’t require to be same as another instruction time shape in the

same Functional unit.

To build a test bench infrastructure for a custom Functional Unit of

an ASIP, we need a UVM based environment which can generate

constraint random stimulus and automated way of checking C

models with the RTL implementation. The PI C models are

integrated with the SV test bench with DPI headers and integrated

into the checkers

Figure 2 FU Block Diagram

So, initially we developed a frame work of templates for

all the test bench, parameters, SV UVM Constraints, Monitors,

Drivers, Sequence Libraries Test cases, file list, compile scripts,

DPI Wrappers for each instruction, DPI Verilog Header files for

imports and Instruction Checker Class. Then all the files mentioned

are generated using the Python and Perl Scripts from the

information extracted from the processor core generated xml files

as shown in Figure 3.

Figure 3 Verification Collaterals from Automated Flow

These generated files along with common test bench components

driver, monitor and sequencer will create a generalized FU

environment. The environment framework for a FU is as shown

below in Figure 4.

From the generated core from the Processor Tools, below

information is extracted using the scripts and passed in different

formats for the SV TB to parse.

▪ Number of Inputs and Outputs of the FU and the Widths

of each port. Remember FU can have operands and

results of any width.

Figure 4 FU TB Environment

▪ Mapping of Operands and Results of an instruction in a

FU with its subset of input and output ports

▪ Grouping of the instruction set to generate a FU DPI

Checker with multiple DPI calls as per the instruction

opcode. Instruction opcodes are machine generated and

are assigned to instructions in the FU by tools.

▪ Time shape of the instruction (Cycle Availability of the

instruction Operands and Results)

▪ Information of operands or results sharing same port

▪ Number of Pipe line stages in the FU.

As all this information is extracted from the generated core xml

files and so it bridges the gap between multiple definitions of the

instruction behavior. This is the same information available for the

compilers to schedule the instructions.

Instruction description is specified in an excel sheet by designers in

a pre-defined format. This excel sheet (is used to generate operand

constraint files for each instruction. Excel sheet per FU as shown

in Figure 5. This document is used to generate the test cases, user

constraint library and operand structs as shown in Figure 6. There

are macros available in the sheet which the scripts parse to generate

constraints an operand. The same excel sheet would be used to

generate a word documentation using the scripts.

Figure 5 Instruction Documentation in Excel Sheet

In the UVM environment in Figure 4, lies an Operation Database

which is built using System Verilog Dynamic memory objects

which has all the information about the Instructions (operands,

results, cycles, port mapping etc.). This is database has information

of opcodes generated, operands and time shapes all instructions in

that FU.

Figure 6 Generated Operand SV Struct Data types

This database is extracted automatically. As shown in Figure 7, each

opcode of an instruction has an entry. In this case the instruction

OP_ADD has two operands and two results. The results are on

cycle 3 and inputs are on cycle 0 on different ports. This

information is fed both to the driver, monitor and instruction

scheduling sequencer. This will enable instruction scheduling

without any resource (port/cycle) conflicts from the sequencer. The

parameterized driver gets information of all the port widths and the

cycle in which an instruction operand/result should be driven or

sampled. A UVM based cycle accurate model samples the inputs

and outputs as per the instruction time shape and passes

information to the instruction DPI checker. The instruction checker

is a generated class that subscribes to the data coming from the

monitor and calls instruction PI C models using the DPI. The RTL

results are then compared with the C model results.

Figure 7 Generate Operation Database Entry

The environment also generates directed random tests, sequence

library for each instruction. The environment provides hooks to run

the vectors generated from a C only simulation on the RTL. It

provides hooks to the designers to write tests in the High-Level

String format. Internal text parser in the environment is capable of

generating the random stimulus to any instruction as per the string

commands. This will enable the designer to try out some tests

without any knowledge on UVM or constraint-based testing. The

designer can give a simple text file as shown in Figure 8, with a

command and pass what values he want on an operand of

instruction. The text parser supports strings for random, random

negative, random positive, negative/positive max/min, same data

as earlier cycle, negative one etc.

Figure 8 High Level Random Tests for Designers

As already mentioned the data path for the instructions is wide and

operands have a mix of the scalar, vector data (n x scalar data

width). In C, complex union of structs are defined in the function

arguments. In RTL these correspond to a bit arrays. To pass this

data into DPI functions we used lowest byte level abstraction of

arrays in the monitor to keep the monitor generic for any operand

or result port widths. To pass these byte arrays into the DPI C

functions, we used svOpenArrayHandle data types as shown in

Figure 9 SvArrayHandle in DPI wrappers. For every instruction,

wrapper functions are generated. These convert the

svOpenArrayHandle data types into the struct data types used in

the function. For all the scalar data types standard equivalent SV

data types are used. To achieve the automation of the DPI

wrappers, we needed to enforce the C coding guidelines on using

consistent data type for a particular data bit vector width in RTL.

The function port argument ordering in the C functions and the

arguments in the TIM instruction specification needed to be

matched. The function names in the C models needed to be

matched with instruction semantic names in the compiler. This

enabled the automation of the DPI headers, DPI imports and

checkers. DPI checkers ensure cycle accurate checking of any

random instruction.

Figure 9 SvArrayHandle in DPI wrappers

The same environment is also used to support the Load Store Unit

verifications which interface the memories. This environment is

particularly very useful for the verification of the memories along

with the FU and doesn’t need any formal data path verification.

The challenges of the instruction evolving do exist in the Load

Store Units.

The FU agent environment is then used in the Processor level

environment in PASSIVE mode to check at Processor level with

multiple agent instantiated. All the agents in the processor level can

be grouped to check instruction scheduling in full core. The

random constraints generated per custom instruction can also be

used for random assembly or c code generation at processor level.

RESULTS

The environment was used in verification of the SIMD instruction

FUs of the vector processor. Once the RTL for a particular FU was

developed, basic automated verification of all instructions was

completed within one hour. This is at least one-week reduction in

man hours required to set up an initial test bench. This also results

in the saving of many man hours to maintain the TB and test cases

when the design is changing. This provides early access to Random

verification infrastructure for designers. And is friendly to

designers who may not have system Verilog verification expertise.

Easy access to high level testcases and directed tests creates chance

to do directed stress validation of a particular instruction. Lot of

directed testing helped in finding bugs in SIMD Functional Units

in both C and RTL. Close cross-BU collaboration between the

verification team and Processor tool teams has helped this

automation infrastructure to be adopted into the Processor tool

Flow.

Future work: This automation frame work is being used to

develop templates for data path Formal verification Tools. We are

currently evaluating Formal tools for data path convergence.

Automation of the instruction set verification, along with formal

techniques would help in coverage closure of the 60% of the SoC,

as there are 20+ such processors in the chip. There are plans to use

the instruction level constraints for grand random C program

generation at processor level and FU instruction level testcases and

environment agents to be re-used in processor level test bench.

Which will uncover issues early in the stage which may/may not

be exposed by compiler/application or c limitation.

SUMMARY

Using the automated frame work to develop the Functional Unit

test bench

− Minimizes the manual verification collateral changes when

the instruction set is evolving during HW & SW Co-

Design.

− Closes the gap between HW and SW validation of the

instruction set.

− Is in line with the shift left and production worthy A0

silicon approaches.

− Creates frame work for the Formal Data path verification

support.

− Enables the possibility to validate behavior of group of

instructions to form a macro operations in the FU test

bench. This particularly is not possible in data path formal

tools as they expect C model for full macro operations.

− Single push button flow to generate multiple test benches

for different FU and reduces multiple man hours required

to setup a TB for custom FU and thereafter to maintain.

− Closure of verification of different abstractions of same

design across and integration of verification with

application generated vectors from C is achievable.

− Ease of access to environment for designers to validate

complete control data of the instruction using the FU TB

and can rely on data path formal tools for exhaustive data

path coverage.

− The FU TB agents generated can be re-used at the top level

and will be used to compare the schedule of the compiler

with actual RTL schedule.

This approach can also be used for any chip which also uses 3rd

party ASIP IP that support custom instruction set.

ACKNOWLEDGMENTS

We would like to thank our Manager Suresh Bandaru, entire

Management in Intel and Custom Processor Group to enable a

cross geo and BU collaboration work

