
1

Automated and Scalable flow for Multi-Partition
RTL Generation

Shruti Narake
Intel Technology India Pvt Ltd

shruti.narake@intel.com

Rajkumar Satkuri
Intel Technology India Pvt Ltd

rajkumar.satkuri@intel.com

Karthikeya Abhiram Peddiraju
Intel Technology India Pvt Ltd

karthikeya.abhiram.peddiraju@intel.com

Alok Anand
Intel Technology India Pvt Ltd

alok.anand@intel.com

Abstract—Structural design tools have capacity restrictions
that force breaking up large IP subsystems into multiple logi-
cal/physical partitions at SOC level. While there is a need for an
automated method to create partitioned RTL, it is also highly
desirable to keep the content of each partition flexible. To address
this problem, an automated and scalable flow has been developed
and this push-button flow is agnostic to movement of RTL blocks
across partitions. Partitioned RTL generation takes 1 hour, which
is 200x reduction in time spent with legacy methods when RTL
blocks are moved, added or removed across partitions. This
flow also generates the inputs like connectivity Tool command
language scripts(TCLs) which provide connectivity information
across partitions. This can be used as-is by the customer SoC
to decrease IP integration time. This flow has been deployed on
one such ARM based subsystem, delivered as 3 partitions to the
customer SoC. The flows and methods described in this paper
are based on Synopsys Coretools suite and can be used by any
IP subsystems which needs to be delivered in partitions.

Index Terms— Partitioned RTL Generation, SoC, IP Parti-
tions, coretools.

I. INTRODUCTION

A. Background

Complex IPs are being designed to serve various appli-
cations like IOTG, ADAS which should provide real time
services. The subsystem deployed in this flow is one such
complex subsytem with huge gate count. Any such complex
IP/Sub-system is preferred to be delivered in partitions to SoC
because of following compelling reasons.

• Area and Gate count constraints As a thumb rule,
customer SoC usually have a limit on gate count and
place-able instances.

• IP Maturity to keep late changing IPs in common
partition.

• Clocking and other low power constraints.
Due to the above mentioned reasons, the deployed IP in this
flow had to be delivered to the customer SOC in 3 partitions,
namely PAR A PAR B and PAR C. These partitions and the
complexity involved are shown in the Fig 1.

Partition content cannot be frozen even till the last lap of IP
delivery due to the Just-in-time IPs that has to be integrated
or sub-IPs that have to be removed or due to the feedback
from floor planning, Placement and routing stages. This would

Fig. 1: Sample IP Partition complexity

require lots of changes which involves creating new partition
level ports, removing the unused ones, creating new inter
partition connections and removing the unwanted connections
as show in the Fig 2.

Manual approach to develop partitioned RTL in fore men-
tioned scenario is cumbersome, time-consuming and error
prone, hence making it a very inefficient choice.

Partition ports are to be frozen early during SoC develop-
ment during Integration phase, as SoC integration teams expect
the consistency to be maintained in the number and the names
of the ports among consecutive milestones of IP delivery. This
poses a bigger challenge when integrating just-in-time IPs, bug
fixes and other feature change requests.

B. Problem Statement

In essence, the problem statement is to develop a flow which
• can automate the generation of partitioned RTL in a very

short time
• is agnostic and flexible to any movement of Sub-IPs

across the partitions



2

Fig. 2: Efforts needed for a simple change of partition
contents

• offers a way to maintain consistency in the number and
name of ports after port freeze

• offers control over port name to be readable and conform
to proprietary naming convention

C. Solution

A flow, called make flow is designed using Synopsys
Coretools, with lots of custom scripting which can solve the
issues mentioned in the problem statement. The inputs for the
setup and the flow are explained in the next section

II. THE ’MAKE’ FLOW

Tools used in the flow:
• Perl Template Toolkit : Fast, flexible and highly ex-

tensible template processing system that increase the
configurability and scalability of design.

• Synopsys CoreBuilder : A robust packaging tool that
allows designers to capture the knowledge and design
intent of the IP in binary format called CoreKits.

• Synopsys CoreAssembler : An IP tool that assembles all
the CoreKits and generates the configured RTL.

As shown the Fig 3 the designed make flow can be divided
into 3 stages namely -

1) Setup Phase
2) Flat RTL Generation
3) Partitioned RTL generation

A. Setup Phase :

1) Project templates creation:: The following list of the
inputs are the only manual and one time setup scripts that are
required for the flow.
project config.pm : This perl module contains all the
crucial RTL parameters, Number of instances of a Sub-IP,
flags/switches and environment variables defined which are
exported to the entire flow.

A snippet of the config.pm setup is shown in Fig 4.

Fig. 4: Snippet of flow input - config.pm

Instantiate components.tt : This template contains the
TCL commands to instantiate the modules and is an input to
CoreAssembler. A snippet of the same is shown in Fig 5

Fig. 5: Snippet of flow input - instantiate components.tt

Create partition.tt : This template groups the Sub-IP
instances in the respective partitions. In order move a
particular Sub-IP to a desired partition, it must be added to
the corresponding partition list. In the snippet shown in Fig 6
PAR1 and PAR2 are two different partitions of the subsystem.

Fig. 6: Snippet of flow input: Illustrating grouping of IPs in
different partitions

Ports.tt : This template describes the ports of the
unpartitioned/Flat RTL top of the IP. For each port, the
direction, width are explicitly mentioned.

Fig. 7: Snippet of flow input: Ports.tt

connectivity.tt : These templates provide the Sub-IP to Sub-
IP connectivity. It can be observed the flexibility offered in
writing the connectivity between two Sub-IPs without any
regard to the partition association.

Fig. 8: Snippet of flow input: Illustrating connectivity
between different IPs

It can be observed that all the above mentioned templates
are highly scalable.



3

Fig. 3: Different stages of make flow



4

2) Design Scripts Creation: In this stage, a script called
create collaterals.pl, processes all the template files and
generates the TcL scripts that are inputs for the later stages.
As shown in the flowchart in Fig 3, the inputs to this stage
are the config.pm and the template files.

3) CoreBuilder: This stage invokes the corebuilder shell
,creates and installs the corekits which contain all the design
information of the RTL blocks.

B. Bottoms- Up/Flat RTL generation :

The Bottoms-Up/Flat RTL generation is comprised of the
following stages:

1) CoreAssembler: This stage invokes the CoreAssembler
which uses the Instantiate components.tcl, create partition.tcl,
ports.tcl, connectivity.tcl and configuration.tcl to generate the
flat RTL and the connection information in the form of
connectivity reports. It has to be pointed out, at this stage there
is no control over the partitioned port names. Having desired
ports names can increase the readability of the RTL and helps
in maintaining consistency of the port names. A custom script,
renaming ports.pl was designed, which is used in the later
stage, for this particular purpose which would allow the user
to specify the required name for any port. Also if there is very
hard constraint on the ports, unused ports can be utilized using
replace ports.pl.

C. Partitioned RTL generation :

This is final stage of the flow which generates the Parti-
tioned RTL. It is to be noted that the advantages of both
Bottoms-top and top-bottom design is being exploited here,
making the flow, a hybrid one. The Partitioned RTL generation
is comprised of the following stages:

1) Partition TCL scripts Generation: cre-
ate partition scripts.pl takes the outputs of the Flat
RTL generation flow, namely the connectivity reports,
flat RTL and generates the inter partition connectivity.tcl,
tops partition connectivity.tcl, create partition ports.tcl.
The port names generated are of IP-NAME PARTITION-
NAME SUB-IP SIGNAL format.

2) Renaming ports: As pointed out in earlier sections,
one downside of using the tool based approach is the lack of
freedom in choosing the desired port name. This provision
is given to the user using a script called renaming ports.pl,
which takes a mapping file as input.

3) Reusing ports: Due to the constraints placed on
the changes in the number of ports by SoC to maintain
consistency and easier integration time, IP team has to decide
on the number of ports at earliest time frame about the port
freeze. One good practice which proved to be helpful is to
estimate the number of spare ports required and adding them
beforehand. These unused ports and the ports left dangling
after connectivity changes due to bug fixes or design changes
can be reused using the script replacing ports.pl.

D. CoreBuilder :

Depending on the modified partition ports, partition CoreK-
its are generated and installed.

E. CoreAssembler :

Using the modified connectivity/partition port TCLs and the
modified partition CoreKits generated in the previous stages,
CoreAssembler generates partitioned RTL.

III. RESULTS:

Using the above mentioned automated flow the ARM based
Subsystem is successfully delivered to the customer SOC in 3
partitions. The flow is agnostic and flexible enough to handle
the movement of Sub-IPs across different partitions. Using
this flow, the design scalability and configurability has been
increased drastically, so that this subsystem IP can be delivered
to other SoCs for any future needs in an efficient way in terms
of efforts and the delivery time. The RTL generated by the flow
is correct by construction as it is lint and Logical equivalence
check (Flat Unpartitioned RTL vs Partitioned RTL) clean. For
a SoC request to move a very huge Sub-IP from PAR A to
PAR B, the updated bug free , partitioned RTL was generated
in less than 1 hour.

A brief comparison of Partitioning the IP with and without
these changes (Manual) is shown in Table 1 below

TABLE I: Comparison between the make flow and legacy
method

Metric With automated Manual RTL Comments
make flow Partitioning
mentioned in this
paper

First-cut 1̃ week 5̃ weeks 5x
Partitioned RTL Increase
bring-up time in efficiency
Partitioned RTL 1 hr Independent 2 weeks 200x
generation in of the complexity depending on increase in
the case of of the module the complexity efficiency
movement of since it is of Sub-IP
Sub-IPS across agnostic and
the partitions robust flow
Soc Integration Provides the Cumbersome and Decrease
support inter lots of feedback in the IP

partition needed to Soc integration time
connectivity.tcl for non-standard at SoC level
which serves as port connections
ad-hoc connectivity
input
for SOC Integration

RTL Quality No Syntax Can be Quality of
and Lint numerous errors the Soft IP
issues possible leading to is increased
as it is Syntax and drastically
tool generated. lint issues.
It is May not be
totally synthesizable
synthesizable

IV. SUMMARY :

A novel approach for partitioning an IP effectively which
helped in delivery of a very complex ARM based subsystem in



5

3 partitions amid of stringent timelines, to SoC is discussed.
The flow that can help in increasing the scalability and
configurability is thoroughly explained which can be ported
to any IP/SS(Subsystem) which uses coretools flow.

V. FUTURE WORK :

Future work would include to make the flow more matured
and robust. Generating the partition constraints and waivers
for the Design check Tools and validation inputs whenever
there is an addition, removal and movement of a sub-IP across
partitions would definitely make the partitioned subsystem
delivery to SoC more agile.

REFERENCES

[1] Coretools user guide and command reference


