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Abstract​—Classical Convolutional Neural Networks    

(ConvNets) have been the ruling benchmarks for most object         
classification and face recognition tasks despite major       
limitations such as the inability to capture spatial co-locality         
between data points and favoring invariance over equivariance        
mechanisms. Hence, Hinton et al, proposed a layered        
architecture called Capsule Networks (Capsnets) to overcome       
these shortcomings by replacing pooling techniques with       
dynamic routing abilities between lower level and higher level         
neural units which better capture hierarchical relationships       
within the data, thus, outperforming traditional systems. By        
overcoming existing limitations, Capsules have proven      
themselves to be potential benchmarks in object segmentation,        
detection and reconstruction. Capsules have achieved      
state-of-the-art results on the fundamental MNIST dataset by        
reducing the ConvNets test error benchmark of 0.39% to         
0.25%. The two novel aspects inspected in this paper are the           
augmentation of this error benchmark distinction by       
optimizing the architecture through five activation units such        
as sigmoid, e-Swish, Swish, variants of Rectified Linear Units         
(ReLU) like Parametric ReLU (PReLU) and Scaled       
Exponential Linear Units (SELU) and the applicability of        
results obtained on visual data to stochastic numeric healthcare         
data uncovering newer challenges of predictive neural       
networks. 

Keywords—Activation function, Stochastic Numeric Data,     
Capsule Networks 

I. INTRODUCTION  

Machine Intelligence is deemed to be one of the most          
prodigious fields of research that has proffered a plethora of          
intuitive applications. Although, the brain’s mechanisms of       
information processing are significantly different from that       
of convolutional systems, latest advancements like Capsule       
networks​[1] apply the Hebbian Learning principles which are        
closer to emulating human capabilities. 
 
The broad architectural framework of Hinton et al, Capsule          

networks has an encoder comprising of a convolutional        
layer, a PrimaryCaps layer and DigitCaps layer along with a          
decoder composed of three fully connected layers, FC#1        
(With ReLU activation unit), FC#2 (With ReLU activation        
unit), and FC#3 (With sigmoid activation unit) which        
effectively reconstruct the encoded image while dealing       
with two performance parameters namely accuracy and loss.        
This loss, in turn, is broken down into margin loss and           
reconstruction loss. The detailed technical functionality of       

each of the encoder and decoder layers is explained as          
follows: 

 
(a) The ReLU convolutional layer ingests the 28 x 28         

image with one or more color channels and detects the          
basic features of the image while forming a feature         
map of the same in the form of a ​20 x 20 x 256 ​tensor               
while dealing with 20992 parameters. This segment       
uses 256 ​9x9 ​kernels ​to ​generate ​an ​output ​with ​256          
channels ​(feature ​maps). ​With a ​stride of ​1 ​and ​no          
padding,​ ​the​ ​spatial​ ​dimension​ ​is​ ​reduced​ ​to​ ​20x20.  

 
(b) The PrimaryCaps layers, which is a modified       

convolutional layer acting as a supporting structure,       
produces a combination of the above detected features;        
This accepts the output of the convolutional layer        
which is a 20 X 20 X 256 tensor and outputs a 6 X 6 X                
256 tensor while dealing with 5308672 parameters.       
The input 28 X 28 image is reduced into 20 X 20            
followed by a 6 X 6 in the Primary caps in terms of its              
spatial dimension. There are 32 capsule units in this         
layer, and a 8D vector that is generated to capture the           
position, texture, hue, color, type, and velocity amongst        
other parameters. PrimaryCaps layer ​uses ​9x9 ​kernels       
with ​stride ​2 ​and ​no ​padding ​to ​reduce ​the ​spatial          
dimension.  
 

(c) the DigitCaps layers generates the transformation      
weight matrix ​W​ij ​and the corresponding loss function        
by the equation: 
 

  
 
(1) 

while dealing with 1497600 parameters.  
 

The transformation matrix is used to transform the 8-D         
capsule ​to ​a ​16-D ​capsule ​for ​each ​class ​j. Because          
there ​are ​10 ​classes, ​the ​shape ​of ​DigiCaps ​is ​10x16          
(10 ​16-D ​vector.) ​Each ​vector ​v​j ​acts ​as ​the ​capsule ​for           
class ​j. ​The ​probability ​of ​the ​image ​to ​be ​classify ​as ​j            
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is​ ​computed​ ​by​ ​‖v​j​‖. 
  

                   (2) 
 
         The final output v​j​ for class j is computed using the 
novel squashing function as​: 

  
 

 
          (3) 

 
 
  
where  
 

 
               (4) 

 
 
 
(d) the three fully connected layers of the decoder serve         

the purpose of calculations for the number of        
parameters based on bias. The first and the        
penultimate layer of the decoder have the ReLU        
activation function while the last layer retains the        
sigmoid activation unit.  
 
The first fully connected layer accepts the 16 X 10          
matrix as input, directed to the 512 neuron units,         
processing 82432 trainable parameters.  
 
The second fully connected layer accepts the output of         
the 512 neural units as input, passing the same through          
a network of 1024 neural units, processing 525312        
trainable parameters 
 
The final fully connected layer accepts the output of         
the second fully connected layer while passing the        
same through a 784 neural unit system dealing with         
803600 trainable parameters which is the final 28 X 28          
output. 

Figure 1. Block Diagram of Capsule Network Architecture 
 
The total number of parameters in the capsule network are:          
8238608. 
 
 

A. Activation Functions 
 
Activation functions or Transfer functions, as they are        
known, refer to non-linear transformations applied to each        
neural node in the network, enabling it to perform more          
complex tasks than simple linear regression.  
 
 

  
   (5)  
 
Since 

‘Y’ can range from negative infinity to positive infinity, the          
activation function is a significant feature applied over the         
input signal which decides whether a neuron fires or not          
depending upon the aggregate of bias and weight over input.          
This mechanism together with backpropagation iterates over       
the bias aggregate to update the gradients resulting in a loss           
metric which in case of capsules is comprised of         
reconstruction loss and margin loss. The mathematical       
definitions of the various activation function units are as         
follows: 
 
The non-linear ReLU​[2]​, defined as  
 

 
                  (6) 

 
 
which capsules rely on, is one of the most widely used           
activation functions as they have proven to work        
consistently well across networks, easily backpropagating      
errors while activating multiple neural layers at once but not          
all, hence making the network efficient and sparse.  

 
The nonlinear sigmoid function​[3] 

 

 
                   (7) 

 
 
which is bound in the range of [0,1] is a smooth, monotonic,            
real-valued, step like and continuously differentiable      
function. But however, the vanishing gradients that appear        
in the sigmoid function, tend to affect the learnability of the           
system as the rate drastically slows down in this range.  
 
The parameterized ReLU function (PReLU)​[4]​ defined as 

 
 
(8) 

 
is an improvised version of the leaky ReLU implementation,         
but ensures faster optimal convergence as parameter ‘a’ is         
learnable.  
 
 
 



The SELU (Scaled Exponential Linear Units)​ [5]​ is defined as 
  (9) 
 
 

where alpha and gamma are fixed parameters learnt from the          
input and do not iterate through the network. Typically, for          
standard scaled inputs, the values are: α: 1.6732 and δ:          
1.0507. 
 
Recent developments in activation functions have paved       
way to newer activation units such as the Swish novel          
activation function defined as: 
 

   
     (10) 
 

 
proposed by Ramachandran et al​[6] and the e-Swish        
activation function​[7] with a learnable beta component       
defined in terms of the sigmoid as:  
 
 
 (11) 
 
 
Our experimentation show the E-Swish and PReLU       
significantly and consistently outperform the ReLU      
activation function.  
 

B. Healthcare  
 
India’s GDP with respect to healthcare remains as low as          
1.2% as opposed to China’s 5.5% or US’s whooping 17%.          
As the government appraises the healthcare sector which is         
poised to grow, technological advancements are substantial       
for outreach in the 280 billion dollar market. To ensure          
affordability and meet the large scale demand for quality,         
research on healthcare systems is of atmost importance with         
accuracy being the key performance parameter. Thus,       
exploring this transformational space in terms of the latest         
machine learning systems like predictive neural net       
frameworks could be an influential progress in this        
direction.  
  
The stochastic numeric UCI healthcare dataset​[13]​ was 
mapped to a time series forecast timeline along with 
appropriate channel labels and fed into the conv2D layer 
which detects the basic features while forming a feature map 
in the form of a​ ​20 x 20 x 256​ ​tensor while dealing with 
20992 parameters. The PrimaryCaps layers produces a 
combination of the above detected features and outputs a 6 
X 6 X 256 tensor while dealing with 5308672 parameters. 
The DigitCaps layers generates the transformation weight 
matrix ​W​ij​ ​and the corresponding loss function while dealing 
with 1497600 parameters. The transformation matrix is used 
to transform the 8-D​ ​capsule​ ​to​ ​a​ ​16-D​ ​capsule​ ​for​ ​each 
class. The three fully connected layers of the decoder serve 

the purpose of calculations for the number of parameters 
based on bias.  
 

II. RELATED WORK 

Hinton et.al.​[8] first proposed canonical object reference       
frames for shape perceptions and detection of spatial        
disposition which was employed in organising interactions       
in parallel networks. This further enabled organisation of the         
interactions between units in any given parallelised network        
so that the pattern activity in question simultaneously        
converges on a single representation. Hence, the concept is         
conceptualised using coordinate hardware, cooperative     
computation and parallelised frameworks as the processing       
of the coordinate frame inherently relative affects the        
environment in which the frame is based. Hence the         
architecture must implicitly pair the elements of the        
surroundings as activity in one can profoundly influence        
another in terms of associated channels like the size,         
position and orientation. This channel based frame reference        
stimulates a rough object segmentation. 
 

This idea further evolved into the “Transforming        
autoencoders”​[9] as vector representations of activity and       
instantiation parameters adapted more efficiently to the       
features of the domain than scalar references. This ​model ​is          
altered ​to ​suit ​the ​different ​viewing ​conditions ​of ​an         
implicitly ​defined ​visual ​entity ​where ​the ​recognition       
probability ​is ​multiplied ​element-wise ​to ​the ​capsule ​output        
as the implicit routing feature learn feature detections over         
time and produce explicit vector output representations of        
instantiation parameters over scalar ones. ​The ​probability ​of        
visual ​entity ​is ​expected ​to ​be ​invariant ​as ​the ​entity ​moves           
over ​the ​manifold ​of ​possible ​appearances, ​while       
instantiation ​parameters ​are ​equivariant. ​As ​the ​viewing       
conditions ​change ​and ​the ​entity ​moves ​over ​the ​appearance         
manifold, ​the ​instantiation ​parameters ​change ​by ​a       
corresponding ​amount ​because ​they ​are ​representing ​the       
intrinsic ​coordinates ​of ​the ​entity ​on ​the ​appearance        
manifold and this hence, is a more promising approach for          
the same over classical neural networks. 
 

Thus Capsules, which is a nested set of neural layers,           
performed dynamic routing mechanisms of selected features       
more efficiently by denoising features at lower lower        
capsules before hierarchically routing to higher level       
capsules which would then uncover more intricate patterns        
within the data. Vector representations perform internal       
computations at each layer which summarise the activities of         
the local pool resulting in highly informative concise outputs         
due to their internal denoising properties.  
 
With respect to improving the efficiency of capsule        
networks, Hinton et al​[10] also proposed EM routing        
algorithm which is the expectation maximisation logistic       
unit recursively updating the weighted assignment      
coefficient matrix clustering probabilities that are closer to        
each other. The algorithm not only paved way for effective          
representation of part whole relationships but also increased        



capsules robustness towards adversarial attacks proving      
significantly lesser vulnerability than baseline ConvNets.      
This technique ​on the NORB dataset cut the state of the art            
test error benchmark by nearly 45%​ .  
 
Capsules in recent times, has been applied to application         
domains such as healthcare on the following datasets: 

(a) Lung disease dataset​[11] where the CapsNets      
architecture was trained on Convnets preprocessed      
data where the ​model ​was ​first ​scanned ​for        
attributes ​such ​as ​sex, ​age, ​noise ​filtering ​and ​then         
resorts ​to ​resizing ​after which it is ​tested ​based ​on          
convolutional neural units ability ​to ​accelerate ​the       
convergence ​using ​pre-trained ​models ​and ​optimise      
them using ​spatial ​transformation techniques.     
CapsNets proved that they can thrive with minimal        
data while far exceeding the ConvNet benchmark       
of 71% in terms of the area under the receiver          
operating characteristic curve. 

 
(b) Brain fMRI images​[12] proposes ​a ​new CapsNet       

architecture based reconstruction mechanism to     
reconstruct image stimuli by comparing with the       
goal of decoding orientation, position and object       
category from activities in visual cortex, mainly       
aimed to answer the open Neuroscience question of        
how sensory stimuli are encoded by neurons and        
conversely, how sensory stimuli can be decoded       
from neuronal activities mainly using fMRI      
images.  
 

Other applications include niche domains like fluid physics        
where traditional linearly iterative computation models have       
been replaced with nested networks to extract complex 3D         
features while generating a reference map charting out        
feature types and coordinate grids.  
 
Other systems such as CapsuleGAN [13] have been explored         
where the discriminator is replaced by a capsule network to          
model ​image ​data ​with ​a ​different ​objective ​function        
evaluated qualitatively and quantitatively ​on ​the ​Generative       
Adversarial ​Metric (GAM) ​and ​at ​semi-supervised ​image       
classification while maintaining the margin reconstruction      
loss. This objective of CapsuleGAN can be mathematically        
summarised as: 

  
 

    (12) 
 
The aforementioned papers have laid the basis for the         
proposed methodology articulated below.  

III. EXPERIMENTATION 
The ReLU activation unit in the capsnet architecture was          

replaced by the SELU, e-Swish, Swish, PReLU, and the         
sigmoid in various different separate experimental setups,       
each of which are executed on the MNIST dataset. This was           

executed for approximately 62 epochs as we found that the          
results could be extrapolated since functions fairly stabilised        
thereafter.  

 
A keras implementation with a tensorflow backend in a         

jupyter notebook environment run on a tesla k40c GPU         
configuration was the key framework. However, each of the         
activation functions were executed in the same framework        
environment with accuracy measures on the MNIST as the         
performance parameter with ReLU as the baseline       
benchmark.  

IV. RESULTS AND DISCUSSIONS 
It was observed that the sigmoid yields the least results at           

11.27% which could be due to the vanishing gradients         
problem. Sigmoid activation function mathematically,     
involve inherent expensive operations which ReLU is able        
to optimise by thresholding. ReLU also deals with sparsity         
issues than the sigmoid as sigmoid tends to generate         
non-zero value resulting in dense representations thus,       
affecting performance.  

 
As far as SELU is concerned, although SELU outputs         

normalized activations to the next layer, ReLU converges        
faster than SELU. SELU is expected to perform more         
effectively under certain conditions such as: 

 
(a) Theorem 1: Since SELU is intuitively self       

normalising, high variance in one layer is mapped        
to lower variance in the next layer, and this         
alternating variance works since: SELU decreases      
the variance for negative inputs and increases the        
variance for positive inputs.  

 
(b) Theorem 2: To prevent gradients from exploding,       

the mapping of variance is bound at the upper limit.  
 

(c) Theorem 3: To prevent vanishing gradients, the       
mapping of variance is bound at the lower limit.  

 
but is computationally more effectively than ReLU. But the         
limits defined by Theorem (2) and (3), is the range where           
SELU perhaps is at the optimal best.  

 
Due to factors such as variance damping of SELU which          

doesn’t fall under the conditions under which most other         
activation functions in question thrive, SELU isn’t batch        
normalised. However, SELU on an average performed       
comparably to ReLU at 99.38 while ReLU set the         
benchmark at 99.40.  
 
The results for the Swish are as follows: 99.06326531 on an           
average, with maximum accuracy value of 99.24 at beta         
values of 0.70783865 and 0.7197824 with corresponding       
loss of 0.165600 and 0.70783865. The least accuracy value         
is recorded at 97.9 with a loss of 0.468200 at a beta value of              
0.822877. Although the beta values have to be learnt which          
affects the convergence rate, it is observed that higher values          



of beta provide faster learning. Hyperparameter optimisation       
inefficiencies could be a probable reason for the said         
accuracy rate of Swish as opposed to ReLU.   
 
The results for the e-Swish, and PReLU in terms of accuracy           
as opposed to ReLU is as tabulated below.  
 

 
Maximum 
Value 

Minimum 
Value 

Average 
Value 

ReLU 99.46456453 98.680815 99.36171797 

PReLU 99.54000115 99.05999899 99.42440876 

e-Swish 99.56 99.34 99.44 
      Table 1. PReLU and e-Swish accuracy with reference to ReLU baseline 
 
The results show that the e-Swish, Swish and PReLU         
consistently outperform the ReLU benchmark on the       
MNIST Dataset. A graphical representation of the same is as          
follows where the y axis represents the accuracy and the          
horizontal x axis represents the epoch value. 
 

 
              Figure 2. PReLU and e-Swish accuracy with reference to ReLU 
 
The other performance parameter that plays a significant        
role in this context is loss, as improvements between         
consecutive iterations are benchmarked against this      
attribute. A tabulation of the obtained results of the PReLU          
and e-swish with reference to ReLU are as follows: 
 
 

 
Maximum 
Loss 

Minimum 
Loss 

Average 
Loss 

ReLU 0.4211860299 0.1490184814 0.1653636606 

PReLU 0.2821122408 0.1474184841 0.1588650043 

e-Swish 0.246235 0.144173 0.1507350678 
Table 2. Comparison between ReLU, PReLU and e-Swish with reference to 

loss parameter 
 
e-Swish outperforms both PReLU and ReLU in terms of the          
loss metric. A graphical representation of the same is as          
follows where the y axis represents the loss and the          
horizontal x axis represents the epoch value.  
 
 

 
Figure 3. Graphical Representation of ReLU, PReLU and e-swish with 

reference to loss  
 
As discussed above, the Swish and ReLU variants        
outperform the benchmark on the MNIST dataset. These        
activation functions could be experimented with different       
datasets in terms of volume and complexity amongst other         
parameters. Other newer functions such as the leaky ReLU         
implementation or tweaks to the existing sigmoid function        
would be research avenues worth exploring.  
 
The survey with healthcare data has proved to be         
phenomenal with 19.5% increased relative correlation as       
compared to previous benchmarks of linear regression​[14] on        
a subset of the dataset. These results are currently being          
extrapolated to cancer research models which are expected        
to surpass the ConvNet accuracy benchmarks leading to        
implications and inferences on demographic constitutions.  
 

V.. CONCLUSION 
From the experiments, it is evident that the e-Swish, and          

PReLU better optimise the capsule architecture than the        
currently used ReLU in terms of better accuracy and         
ensuring faster convergence, hence, lesser training time.       
These activation units outperform the state of the art         
accuracy benchmarks on MNIST dataset. Future work may        
be carried out using newer and novel functions applied to          
more complex models.  
 
The non-normalized, distributed data with changing      
behavioral attributes and complex curves often pose new        
challenges. This ambitious research venture could redefine       
modern processing with respect to time series analysis and         
forecasting where age old contemporary systems seem to        
have failed miserably with techniques that are possibly be         
profoundly flawed.  
 

With the consideration of the aforementioned ideology,       
these newfangled architectures are expected to rule and        
drive systems of the future where technologies are rapidly         
advancing and landscapes are fast changing. While current        
technological revelations delineates the aforementioned     
scenarios, the future could spur out formidable and        
impressive inroads to advancements to not only effectively        
tackle current challenges but to create and solve newer         



problems in this space that we don’t even know exist yet 
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