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Abstract—Kernelization is the technique of preprocessing a
problem instance to reduce it to a smaller instance. In this paper
we discuss the kernelization technique for a graph problem called
vertex cover. This technique is based on a graph structure known
as crown structure. The current best known solution for kernel-
ization of vertex cover based on crown structure reduces the
problem instance to a smaller instance of size 3k, where k is the
size of vertex cover. The solution discussed in this paper reduces
the problem instance to an instance of size 2k. Vertex cover has
applications in computer network security(worm propagation)
and machine learning(text summarization).

Index Terms—Vertex cover, fixed parameter tractable, kernel-
ization, Gallai Edmonds decomposition

I. INTRODUCTION

NP-hard problems are a class of problems that are expected
to have non-polynomial time complexity, that is the running
time of the solution will be an exponential function, or worse,
on the size of the problem. Vertex cover problem is one such
NP-hard problem. Vertex cover of a graph, say S, is a subset
of vertices of the graph such that all edges of the graph have
at least one end-point in S. Minimum vertex cover is the the
vertex cover of the smallest size among all possible vertex
covers. Finding a minimum vertex cover find its applications in
keyword based text summarization [1] and also in simulating
propagation of computer worms on a network and designing
techniques to prevent them [2].

In search for more efficient solution for NP-hard problems
Downey and Fellows [3] began to study various hard problems
to find if the size is the cause of the exponential factor
in the time complexity or some other parameter causes the
exponential explosion in the time complexity. This domain
of research is called the study of fixed parameter tractable
problems [6]. To understand the main idea behind this research
is to find such solutions which have time complexity of
the form O(poly(size).αparameter). Here size stands for the
problem instance size, poly() denotes a polynomial function
and parameter denotes some parameter(s) other than size on
which the problem depends on. This parameter need not be
large even for the large size problem instance. For example,
for vertex cover, size of the vertex cover can be a parameter.
Any solution that has complexity which is polynomial in size
of graph and exponential in size of vertex cover will be a fixed
parameter tractable solution. So for graphs having vertex cover
of small size, this fixed parameter tractable solution gives an
efficient solution for vertex cover.

Kernelization is the technique in which the problem instance
is reduced in polynomial time to a smaller instance(kernel)
whose size is a polynomial function of some non-size pa-
rameter, i.e., the size of problem instance itself reduces
to p(parameter) where p() is a polynomial function [7].
This way any regular solution will have time complex-
ity O(poly(size) + f(p(parameter))) where f is a non-
polynomial function.

In this paper, first the best known solution for kernelization
of vertex cover using crown structure is explained. Then the
proposed solution is discussed and compared with the best
known solution. At the end scope for future work has been
discussed along with concluding remarks.

II. LITERATURE REVIEW

A. Notations and definitions

We denote a graph as G(V,E) where V is the vertex set and
E is the edge set for the graph. We denote a bipartite graph as
G(V1, V2;E) where V1 and V2 are two parts of the vertex set.
We will use G[V ′] to denote the subgraph of G induced on V ′

where V ′ ⊆ V . We will use N(S) to denote the neighbors of
a vertex set S, which do not belong to S. It is called the open
neighbourhood of S. The closed neighbourhood of a vertex set
S, denoted by N [S], is the set of vertices which are either in S
or in the neighbourhood of some S vertex. If S is a singleton
{x}, then we denote these by N(x) and N [x]. By deg(x) we
denote the size of N(x). A bipartite graph is a graph with two
sets of vertices such that no edge exists between the vertices
of same set [9]. A matching in graph is a subset of edges such
that all vertices have at least one incident edge in the subset
[8]. Maximum matching is the subset of largest size among all
possible matchings. Independent set is a set of vertices such
that no edge exists between the vertices of the set [10].

B. Gallai Edmonds decomposition

Gallai-Edmonds decomposition is partitioning the vertices
of a graph into three subsets that satisfy certain properties
[4]. One subset, say D, is the set of vertices that will not be
present in any vertex cover of the graph. Subset A will be
the set of vertices that are present in all vertex covers of the
graph. Subset C will be the set of remaining vertices.



C. Known result

A crown structure is said to form from 2 disjoint subsets of
V , say I and H , if the following conditions hold :

1) I is an independent set
2) H = N(I) where N(I) is the set of all neighbors of I
3) Edges between H and I contain a matching which

matches all vertices in H .

Theorem II.1. There exists a minimum vertex cover of G that
contains all vertices of H and no vertices from I .

Proof. Let C be a minimum vertex cover of G. Let Ic = I∩C
and Īc = I\C. Let Hc = N(Ic) and H̄c = N(Īc). Since the
vertices in Īc are not in the vertex cover, vertices from H̄c are
in the vertex cover C to cover the edges incident on Īc. Since
N(H\Hc) ⊆ Ic and there exists a matching in which every
H vertex can be matched to an I vertex, we can deduce that
|H\Hc| ≤ |Ic|. So |C ∩ (I ∪H)| = |Ic| + |Hc| ≥ |H\Hc| +
|Hc| = |H|. We also know that I is an independent set, so
C ′ = (C\I) ∪H is also a vertex cover. Then C ′\{I ∪H} =
C\{I ∪H} and C ′ ∩{I ∪H} = H . So |C ′| ≤ |C|. Hence C ′

is also optimal.

We can obtain the sets I and H in the following way.
Let M1 be a maximal matching for G. Let U be the set of
unmatched vertices in M1. Let G[U ∪N(U)] be the bipartite
graph induced on U∪N(U). Let M2 be a maximum matching
for the bipartite graph.

Theorem II.2. Let U ′ be the set of unmatched vertices in
M2. Let U” be the set of vertices that are reachable from an
unmatched vertex by an alternating path of even length in M2.
Then I = {U ′ ∪ U”} ∩ U and the neighbors of I in G, say
H , form a crown structure in G.

Proof. Let B(V1, V2;E) be any bipartite graph. Let D′, A′, C ′

form the Gallai-Edmonds decomposition of B. Let D1 =
D′ ∩ V1 and A2 = A′ ∩ V2. The properties of Gallai-
Edmonds decomposition [4] implies that set D1 consists of all
unmatched vertices in V1 in a maximum matching M and all
the vertices reachable from an unmatched vertex in V1 by an
even length alternating path in the maximum matching M . It
also implies that set D1 is an independent set and the vertices
of the set A2, that contains all neighbors of D1, are always
matched in all maximum matchings and a matching edge
incident on a vertex of A2 is always of the form (a, d) where
a ∈ A2 and d ∈ D1. Hence I = D1 and H = A2 satisfies all
three conditions required to form a crown structure.

Hence vertices from set I and H can be removed from
consideration and the problem instance can be reduced to
(G′, k′) where k′ = k − |H| and G′ = G(V ′, E′) where
V ′ = V \(I ∪H) and E′ = {(x, y) ∈ E|x, y ∈ V ′}. Since the
number of edges in a maximum matching is less than or equal
to number of vertices in minimum vertex cover, M1 and M2

can have at most k edges and 2k vertices. Let n = |V |. So
|U | ≤ n− 2k, which implies that |I| ≤ n− 2k − k = n− 3k
because at most k vertices from H can be matched by M2.

Hence |V ′| ≤ n− (n− 3k) = 3k. Thus the reduced instance
has at most 3k vertices.

III. PROPOSED SOLUTION

A. Reduction

Let U be any independent set in G. Consider a bipartite
graph B on the vertex sets U and N(U), the neighbours
of U , and edge set being the edges running between them
denoted by EB . Note that there may be edges between N(U)
vertices which are clearly not a part of B. Let S′

1, S
′
2, S

′
3 be

the Gallai-Edmonds decomposition of the vertex set of B. In
any maximum matching of B there are |S′

3|/2 edges which
mutually match all the S′

3 vertices and |S′
2| edges which match

all the S′
2 vertices to S′

1 vertices, leaving |S′
1| − |S′

2| vertices
unmatched. Thus within U ∪ N(U) there must be at least
|S′

2| + |S′
3|/2 vertices in any vertex cover of G just to cover

the edges running between U and N(U).
Let S′

iu = S′
i ∩U and S′

in = S′
i ∩N(U). The edges in EB

can be partitioned into E12 running between S′
1u and S′

2n;
E21 between S′

2u and S′
1n; E22 between S′

2u and S′
2n; E23

between S′
2u and S′

3n; E32 between S′
3u and S′

2n; and E33

between S′
3u and S′

3n. Let δG(X) denote the set of edges with
one end in the vertex set X and the other outside it. From the
properties of Gallai-Edmonds decomposition we have facts:

(i) δG(S′
1u ∪ S′

3u) ⊂ δG(S′
2n ∪ S′

3n),
(ii) |S′

1u ∪ S′
3u| ≥ |S′

2n ∪ S′
3n|,

(iii) In any maximum matching of B there are |S′
2n ∪ S′

3n|
matching edges incident on S′

2n ∪ S′
3n.

Proof. (i) Set U is an independent set so every edge incident
on S′

1u is also incident on S′
2n and every edge incident on S′

3u

has its other end in either S′
3n or in S′

2n.
(ii) and (iii) In any maximum matching of B every vertex

in S′
2n is matched to some vertex in S′

1u so |S′
2n| ≤ |S′

1u|
and vertices of S′

3u and S′
3n are mutually matched so |S′

3u| =
|S′

3n|.

Corollary III.0.1. If C is a vertex cover of G, then C ′ =
(C \ (S′

1u ∪ S′
3u)) ∪ S′

2n ∪ S′
3n is also a vertex cover and

|C ′| ≤ |C|.

Proof. Consider any maximum matching M of B. So M is
also a matching in G. From (iii) we know that M has |S′

2n ∪
S′
3n| edges between S′

2n ∪ S′
3n and S′

1u ∪ S′
3u. So C must

have at least |S′
2n∪S′

3n| vertices from S′
1u∪S′

3u∪S′
2n∪S′

3n.
From (i) S′

2n ∪ S′
3n covers all the edges that any subset of

S′
1u ∪ S′

3u ∪ S′
2n ∪ S′

3n can cover so C must also be a vertex
cover. Also from (ii) |C ′| ≤ |C|.

This result gives a reduction for the problem of minimum
vertex cover of a graph.

Reduction Steps:
(i) Compute the Gallai-Edmonds decomposition of the given

graph G = (V,E) into sets S1, S2, S3.
(ii) Let S1

1 denote the set of isolated vertices of the induced
graph G[S1].

(iii) Taking U = S1
1 , compute the bipartite graph B.

(iv) Compute S′
1u, S

′
3u, S

′
2n, S

′
3n.



(v) Determine the graph G′ = G[V \(S′
1u∪S′

3u∪S′
2n∪S′

3n)].
From the corollary we have immediate result.

Lemma III.1. If C ′ is a minimum vertex cover of G′, then
C ′ ∪ S′

2n ∪ S′
3n is a minimum vertex cover of G.

B. A 2k Kernel

Given any graph G we can perform the above reduction
until it does not reduce any further. This will happen when
S′
2u = U = S1

1 and S′
3n = N(U) = N(S1

1). At this stage
we know that there exists a maximum matching of B which
matches all the vertices of S1

1 to vertices in N(S1
1). So the

reduced graph has a matching in which all the S1
1 vertices are

matched. Now we will show that the number of vertices in
this graph is at most 2 times the number of vertices in the
smallest vertex cover for it.

Lemma III.2. Let G = (V,E) be a graph and S1, S2, S3

be its Gallai Edmonds decomposition. Let S1
1 be the set of

isolated vertices of G[S1]. If there exists a matching of G in
which all the S1

1 vertices are matched, then |V | ≤ 2|C| where
C is a minimum vertex cover of G.

Proof. We will denote the set of vertices in the larger compo-
nents (of size 3 or more) in G[S1] by S3

1 . So S1 = S1
1 ∪ S3

1 .
Let M0 be a matching in G in which all the S1

1 vertices
are matched. Starting from M0 we can apply Edmonds’
algorithm to compute a maximum matching M of G. Even
after extending a matching by M” = M ′∆P where P is an
augmenting path, the set of matched vertices in M ′ remain
matched in M”. Hence every S1

1 vertex remains matched in
M . So G has a maximum matching M in which all the S1

1

vertices are matched.
Let us consider two induced subgraphs on two disjoints

subsets of vertices: G1 = G[S1 ∪S2] and G3 = G[S3]. Let c1
and c3 be the sizes of the smallest vertex covers of G1 and
G3 respectively. Then the size of the smallest vertex cover of
G must be |C| ≥ c1 +c3. Now we will estimate lower bounds
for c1 and c3 respectively in terms of the number of vertices
in these graphs.

Let p1 be the number of isolated vertices in G[S1] and p3

be the number of larger components in G[S1]. Also let n11, n
3
1

denote the number of vertices in these type of components
respectively. So p1 = n11 and n11 + n31 = |S1|.

The connected components of G[S1] are near-perfectly
matchable. If any such component has 2r + 1 vertices for
r ≥ 1, then any vertex cover will require at least r+1 vertices
to cover all the internal edges of the component.

Let us split c1 into 2 parts. c11 denotes the number of vertices
to cover the edges incident on S1

1 . So these vertices are either
in S1

1 or in S2. c31 denotes the number of cover-vertices inside
the larger components to cover only the internal edges of these
components only.

Since in M all S1
1 vertices are matched so c11 ≥ n11. For

larger components c31 ≥ (n31 + p3)/2. We know that in every
maximum matching all S2 vertices are matched to S1 vertices
such that at most one vertex per component is matched to some

S2 vertex. So |S2| ≤ p1+p3. So |S1|+|S2| ≤ n11+n31+p1+p3.
We have n11 = p1 so |S1| + |S2| = 2n11 + 2(n31 + p3)/2 ≤
2(c11 + c31) ≤ 2c1. The number of matching edges in S3 is
exactly |S3|/2 so |S3| ≤ 2c3. So |V | = |S1| + |S2| + |S3| ≤
2(c1 + c3) ≤ 2|C|. This implies that the reduced instance will
have at most 2k vertices.

IV. CONCLUSION AND FUTURE SCOPE

Kernelization helps in designing efficient fixed parameter
tractable solutions for NP-hard problems. Kernelization of
vertex cover is a significant issue because of the numerous
applications of vertex cover. Here one such approach was
discussed based on crown structure which is an improve-
ment on the existing best known approach based on crown
structure. There is scope of further improvement by utilizing
the properties of each partition obtained by Gallai-Edmonds
decomposition.
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