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Abstract—in a multi-FPGA based prototyping, a SoC is 

partitioned in multiple modules. Each FPGA contains a 

partitioned module in addition to FPGA specific infrastructure 

components. The functions of these components are to generate 

clocks, to multiplex interconnect signals and to interface with 

peripheral components. The handling of a multi FPGA system in 

the engineering process is challenging task. It requires 

comprehensive knowledge of system architecture, specification of 

FPGA device used and hardware definition languages. In this 

paper, we propose a ‘plug and play’ framework which aids in 

seamless stitching of partitioned module with FPGA 

infrastructure. FPGA has limited resources for logic 

implementation and routing. These infrastructure components 

are the overhead to the desired partitioned module 

implementation in an FPGA.  This paper discusses a novel 

infrastructure design which is scalable, robust and reduces 

turnaround time. Additionally, this paper also presents a scheme 

for pin aware placement TDM components that can address 

routing congestion. 
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I. INTRODUCTION 

There are three verification methods in design cycle: 
Logic Simulation, Emulation and FPGA (Field 
Programmable Gate Array) prototyping. Logic simulation, 
although providing the best visibility and debugging 
capabilities, is extremely time consuming and often 
unreliable. It is best suited for small blocks. Emulation offers 
reduced run-time than logic simulation. It has quick turn-
around times and good control and high visibility. The 
availability of emulator machine per user is limited since it is 
shared across several projects. The high cost limits number 
of emulator machines. Emulator is good option for critical 
code debug but expensive for software development. The 
multi-FPGA-based prototyping is cheaper in cost, but lacks 
in control and visibility [1]. It also has much longer turn-
around times. A robust ‘plug and play’ FPGA infrastructure 
for prototyping can significantly reduce the turnaround time. 

The SoCs are getting more complex: multiple cores, big 
memories, huge IP blocks, as well as numerous gated clocks. 
The mapping of a complex SoC into prototyping platform 
requires weeks or sometimes even months. The SoC sub-
systems are developed incrementally in phase by 
geographically diverse teams. Also, the expectation is to get 
"right-first-time" chip with no re-spins. Therefore, the 
objective of prototyping is to build an FPGA platform, 
containing a mature SoC design (ideally tape-out version) 
attractive for the software development teams, much earlier 
than first silicon tape-out. The shrinking project time frames 

pose real challenge for prototyping. The only way to meet 
the two contrary requirements of time is to have an 
extremely fast FPGA mapping flow [2]. 

There are two choices for prototyping. Firstly, to build 
customized multimillion-gate prototype using off-the-shelf 
FPGAs. Secondly, to buy or rent predesigned prototyping 
systems. We are using an in-house, custom developed multi-
FPGA platform for prototyping the large SoC or Cluster of 
IPs. This paper is issued from the experience of prototyping 
latest highly complex Intel SoCs. 

II. PROTOTYPING PROCESS AND PLATFORM 

A. Steps of prototyping 

The sequence of steps is shown in fig. 1. 

1) The first step of prototyping is partitioning of SoC 

design into multiple FPGAs [3]. Sometimes, a sub block of 

an SoC can be larger than an FPGA in which case it further 

splits into smaller modules. Conversely, one FPGA can 

accommodate multiple SoC sub blocks also. Finally, based 

on the logic resources available and number of interconnect 

signals, each FPGA gets one paritioned module. 

2) The partitioning of design creates thousands of 

interconnect signals between FPGAs. Although, inter-FPGA 

routes are in order of hundreds, the routes etched on the 

board are limited. Hence, interconnect signals are time 

division multiplexed and then sent over FPGA route [4].  

 
Fig. 1. Steps of prototyping 

 



 
Fig. 2. Multi-slot chassis 

 

 
The number of interconnect signals that can be reliably 

multiplexed by one route is called Multiplex Ratio. The 

details about inter FPGA routes and their multiplexing ratios 

constitute ‘TDM information’. Based on TDM information, 

each interconnect signal is allocated one time slot in one 

assigned route. Each route is associated with two IO pins, 

one on sending and other on receiving FPGA [5]. The IO 

links used for TDM are both general purpose IO pins and 

High Speed Serial Interface (HSSI) channels. The output of 

second step is a vast database of TDMed modules with 

FPGA IOs assignement. 

3) In third step, the TDMed module is converted to 

FPGA top rtl. The module is plugged into an FPGA 

infrastructure. Henceforth, infrasturcture will be referred as 

infra. The infra provides clock, connection to TDM 

components and interface to other peripherals. This step is 

discussed further in sub section C of section II. 

4) In the fourth step, the FPGA RTL top files are 

synthesized into bitstreams. The Static timing Analysis 

(STA) for each FPGA build is cleaned before the board 

testing. 

B. Multi Slot Platform 

The in-house prototyping system is a multi-FPGA, multi 
slot chassis as shown in figure 2. It is built on an industry 
standard Advanced TCA chassis. It has a custom backplane 
with fixed routes for signals and clock. A PCIe based host 
card provides the interface to user for configuration, control 
and status monitoring. A PCIe network provides connectivity 
to all FPGAs in the chassis.  

One slot supports one blade/board. The words blade and 
board are used interchangeably. Stratix10 devices and 
different peripheral devices are placed on each blade. 
Peripheral module includes DDR4 memory, SPI Flash, 
SGMII PHY etc. The FPGAs are connected by traces etched 
on the board and over backplane. Additionally, there are 
flexible cables which are connected via mini-SAS. Thus, we 
have highly connected multi-FPGA platform. 

C. FPGA Top RTL Design Process  

While the SoCs are clocked by specialized clock circuitry 
that includes a PLL. A partitioned design spanning multiple 

FPGAs has to be clocked locally. From the original design, 
the clocking circuitry is removed and replaced with much 
slower frequency clocks in all the partitions. Upon power up, 
all these are synchronized before SoC reset is de-asserted. A 
clock synchronization scheme is employed to make sure that 
clocks in all the partitioned modules are edge aligned within 
acceptable skew limits. Thus, the partitioned modules 
virtually gets the clock edge at the same time in all FPGAs. 
If the SoC has Memory Interfaces, then the PHY layer is 
replaced by FPGA’s DDR PHY. Similar is the case with 
Ethernet, SPI flash, UART, JTAG interfaces etc. 
Additionally, there are some custom designed debug 
components to capture the partitioned module’s signals and 
present data to the user. 

The clocking scheme, various peripheral interfaces, TDM 
modules and debug components are part of infra [6]. As 
shown in figure 3, the infra envelops the partitioned module 
and completes a FPGA top RTL.  The RTL is generated by 
Industry standard packaging and integration tools.  

III. NOVEL DESIGN METHODOLOGY 

A. Infra Design 

Infra design is portable, configurable and highly flexible. 

Based on the TDM database generated in Step 2 of 

prototyping and user specified configuration, a network of 

components is added to partitioned module in plug-and-play 

fashion. As shown is figure 4, all the three FPGAs have 

different infra. Clock module and infra access node is 

common to all. FPGA 1B is least congested. FPGA 1C is 

highly congested. 

During the testing on board, there is an Infra-health 

check done before reset to SoC partitions is lifted. First and 

foremost, it is checked whether FPGA PLLs are locked, and 

clocks are synchronized across FPGAs. In the TDM 

modules, there could be data corruption due to poor signal 

integrity on the board. Also, there could be misalignment in 

TDM data frame. Each infra component has a “Control and 

Status Register” space, which monitors and controls its 

behavior during health check. 

 
Fig. 3. Infra components of FPGA top RTL 

 



 
Fig. 6. Infra ring structure 

 

 
Fig. 5. Infra components connected in ring fashion 

 

 

B. Infra-Ring 

1) Structure and Protocol 
The communication from the host PCIe card to each 

CSR space of infra component is performed via Infra access 
node. Within an FPGA, communication bus of infra 
component is connected to PCIe host via Infra access node. 
There are two topologies for this connection- Star and Ring. 
As shown in figure 5, star topology offers minimum latency 
at the cost of dedicated communication bus for each 
component. Ring topology offers communication pathway 
(bus) at the cost of high latency. 

Typically, there are 200-300 infra components to 
connect. These components are connected in ring topology 
because it offers better routing implementation and high 
latency is acceptable during infra health check. As shown in 
figure 6, Avalon Memory-mapped (AVMM) interface is 
converted to Avalon Streaming interface (AVST) in infra 
access node. AVST ports are connected to each component 

to form a ring [8]. 

2) Addition in FPGA top RTL 

The infra components are assigned with a unique 

sequential channel id number, Cn based on the order in 

which they are logged in “TDMed module database”. These 

modules are then connected in order of channel id number. 

C. Pin Aware placement  

1) STA closure 
The place and route of large partitioned module with 

huge interconnections is an exhausting task for machine and 
repetitive for user if fitter tool fails. There is an increasingly 
serious timing closure problem when using high-
performance, high-complexity FPGAs implemented at the 14 
nm technology node [9]. A multiplex ratio of 2000 on a 
HSSI channel is difficult to route because of routing 
congestion as well as hard to close STA timing. 

2) FPGA pin Lock 

The IO pins in FPGA have fixed location marked by banks 

and tiles. Thus, the placement of TDM component is always 

close to IO pin. The AVST-ring bus gets routed in crisscross 

manner with overlapping routing, as shown in figure 7. If 

the AVST ring is routed in non-overlapping manner it could 

free up the routing resource for partition interconnect 

signals.  

3) Implementation 

A non-overlapping AVST can be generated by 

manipulating the channel id number. Firstly, spatial 

coordinates of the FPGA pin associated with each infra 

block is identified [10]. A directed graph from infra access 

node traversing each “spatial coordinate” is generated such 

that there is no overlap with another edge. The channel id 

numbers of the components are rearranged according to the 

respective node number derived from the directed graph. 

 
Fig. 4. Infra implementation in 3 FPGAs 



IV. IMPLEMENTATION RESULTS 

The following results shown here are based on the mapping 

of an Intel SoC. Table 1 shows a snippet of heavy resource 

utilization in one Stratix10 FPGA.  

TABLE I.  FITTER RESOURCE USAGE SUMMARY 

Resource Usage % 

 Total LABs:   

partially or completely used                              
92,207 / 93,312 99 

 Logic utilization (ALMs needed / 

total ALMs on device) 
756,656 / 933,120 81 

 Total I/O pins        591 / 1,152  51 

 Total HSSI channels            19 / 96 20 

From the table 1, it is evident that it is possible to TDM 
signals on ~50% IOs in an FPGA which has 99% logic 
utilization. The results clearly depicts that a well-defined 
infra eases the placement and fitting of a resource extensive 
design. The number of IO pins and HSSI depends on the 
TDM modules instantiated. The LABs and ALMs are 
majorly consumed by partitioned module. As shown in 
Graph 1, most of the FPGAs are more than 90% utilized. 
Graph 2 shows the ability of the infra to TDM interconnect 
signals even at high logic utilization. 

CONCLUSION AND FUTURE WORK  

In this paper, we have discussed prototyping steps for an 
in-house prototyping platform. In the prototyping world, 
module partitioning, signal TDM and signal routing have 
been extensively researched. We have focused on the latter 
stage of FPGA top RTL generation. A flexible and robust 
infrastructure speeds up stitching of partitioned module with 
its components. This integration is done in a “plug and play” 

approach. This approach is employed in prototyping multiple 
SoC and yielded consistent results. 

 

Graph 1. LABs and corresponding ALMs utilization 

 

Graph 2. Comparison of LABs utilization vs IO pins used 

We are motivated to improve the system's set of features. 
The foremost is the Graphical User Interface for analyzing 
the results. This enhancement will save lots of time in the 
development cycle. 
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