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Abstract—Building a secure platform to connect distributed 

products, software and hardware simplifies digitalization of 

businesses. This calls for platforms that can help companies 

ideate, prototype, validate and develop using cutting edge 

technologies such as Artificial Intelligence, Internet of Things, 

Block Chain, Big Data and Analytics. 

In this paper, we illustrate how such Integrated Cloud 

Cockpits provide a seamless environment with services that 

facilitate development of next generation smart applications 

that are scalable, resilient and provide decreased price-

performance ratio. We support this research by presenting an 

empirical study on how intelligent surveillance and predictive 

maintenance of oil pipelines is made practicable by employing 

collaborative cloud services. We have leveraged the services 

provided by Google Cloud Platform to show how existing 

cloud platforms can suffice the needs of a secure and fully 

featured enterprise use case. 

 

I. INTRODUCTION 

One of the prominent reasons why the software industry 

is shifting to cloud computing is the need for fast 

innovation. Software vendors should be able to provide their 

innovations to the customer for testing, learning and 

improvising at a rapid pace. For this purpose, Integrated 

Cloud Platforms are working like a one stop destination to 

provide services that ease the development and maintenance 

of such a new breed of next generation applications. These 

cloud platforms have a mix of diverse services that cover all 

aspects of software development. For instance, there are 

services that provide the infrastructure for development 

(development environment, database instance, 

authorization/authentication etc.) as well as there are 

technical and functional services like speech to text, 

blockchain service, big data management and other such 

services. 

These Cloud Platforms suffice the needs of end to end 

development and also aid in solving business problems via 

intelligent software in the recent times. One such very tough 

business problem has always been maintenance and 

surveillance of oil and gas pipelines. There are multiple 

reasons why this was one of the most cumbersome scenario 

to be handled via a software. As pipelines are spread across 

geographies and in extreme remote areas, it’s nearly 

impossible to have human inspection planned in an 

optimized manner. Even to find the exact location of the 

failure requires a lot of time due to the vast spread of the 

pipeline. It’s also not very easy to plan a maintenance of 

these pipelines on a short duration due to unavailability of 

experts at the required locations. In the below sections, we 

first explore the key characteristics and features of cloud 

platforms [1], and then we dive into the reference 

architecture, details and design of the case study. 

 

II. KEY CHARACTERISTICS OF SERVICE 

BASED INTEGRATED CLOUD PLATFORMS 

The preliminary meaning of software and hardware 

resources has been redefined by cloud computing in a way 

that both hardware as well as software is available as a 

service on the cloud platform. This helps in reducing the 

total time for development and ownership for software 

organizations. 

Following are a few cloud platform design 

characteristics [4][7], that we were able to gather for the 

development of new generation connected applications: 

 

A. Service based Offering  

Service based offering of the resources is the key to 

reduce development and maintenance efforts as well as 

increases future scalability. For consumer, these services 

can also be purchased in any quantity at any time [2]. 

 

B. Efficient Use of New Development Paradigms  

These Cloud Platforms should be able to provide all 

new technological paradigms as service offerings. For 

instance, there can be Artificial Intelligence services, Deep 

Learning services, IoT (Internet of Things) services, Block 

Chain as a service, as well as other technical services 

available that can be consumed on need basis. 

 

C. Robust Integration Framework  

To create well-organized smart applications that can 

read connected machines and devices as well as have the 

ability to connect to heterogenous systems, in-built 

Integrated services are required by software vendors. These 

services should be able to read data from devices or systems 

effectively and then transform it to be able to be use in 

consuming applications [8]. 

 

D. End to end Development Environment  

The concept of Platform as a Service (PaaS) enables the 

users to create their application without investing efforts on 

the infrastructure. The Integrated Cloud Platforms like 

Google Cloud Platform or Microsoft Azure already allow 

application developers to focus on the development without 

the need of setting up the web integrated development 

environment (Web IDE) on the local machine [15]. 

 



 

 

E. Strong Authorization and authentications Concepts  

As security is the most crucial factor for any 

application, cloud platforms provide in built security 

services that make the authorization and authentication 

aspects easily implementable. 

 
III. HIGH LEVEL ARCHITECTURE EVOLUTION 

FOR THE CASE STUDY 

 

Historical Way of Handling Pipeline Monitoring 

Handling of a complex use case like automated Oil pipeline 

surveillance was never an easy task. However, even before 

cloud computing there were ways to achieve part of this use 

case [14]. 

One such instance was to use leak detection systems to 

check the leakage of flow in the pipelines. These leak 

detection systems would use to be either external or internal, 

depending on where they were installed on the pipeline. 

Additionally, these leak detection systems would require 

also an integration with existing Supervisory Control and 

Data Acquisition(SCADA) systems. There were several 

challenges faced in such kind of an architecture as 

mentioned below: 

• These leakage systems could not give the accurate 
geographical coordinates of the leak due to the 
vastness of the pipeline. 

• Monitoring was done via SCADA systems which 
were rudimentary since receiving the exact 
information on real-time basis was difficult. 

• Too many physical devices (leak detection systems) 
made the whole setup difficult to manage both from 
operation as well as maintenance perspective. 

• As the monitoring was mostly done via SCADA 
systems, there was not much flexibility to get a 
specific software to do this monitoring with respect 
to KPIs and analytics. 

 

Additionally, Weibull distribution has historically been one 

of the tools for describing the probability of pipeline failures 

over time. While this technique is very accurate at 

describing failure distributions for large populations of 

components, it works very poorly at predicting the time 

until failure of an individual component. The mean time 

until failure is often used to predict times until failure of 

individual components, but this value may vary greatly with 

actual times until failure. 

 

Proposed Architecture 

As mentioned in the above segment, we propose to use the 

advantages of cloud computing and Integrated platforms 

(for instance Google Cloud Platform, Microsoft Azure 

Cloud Platform etc.) to create the surveillance and failure 

prediction application. We suggest using the inherent 

aspects of cloud computing like Cloud IDE(Integrated 

Development Environment), Pay and consume model 

services(Machine Learning, Internet of Things, Data 

Management, Authorization & Authentication, User 

Management etc.). 

 

Fig. 1.  Proposed Architecture of the Use Case 

Figure.1, shows the overall reference architecture of the 

considered case study with the following details:  

 

A. Surveillance Image Streaming via Satellites  

The satellite images are continuously being sent to the 

cloud platform using stream processing capability of big 

data services. 

 

B. Classification of Surveillance Images to find Anomaly 

Then the big data management services help in 

cleansing and storing the data. As there will be always 

incoming feed of satellite images, the need to understand the 

incoming images and then classify it as useful or not is very 

critical. 

 

C. Drone based Image and Data Capture  

Once an anomaly has been detected, usage of drone is 

proposed to get the precise details of the leakage location 

and the particulars of the pipeline condition from the 

information received from the sensors. We propose to use 

IoT services that would be used to getting the information 

from the drones. The details are discussed in the subsequent 

segments of the paper. 

 

D. Integrated Development Environment (IDE)  
Web IDE will give us an inbuilt development 

environment, which helps the developer to build the 

surveillance and prediction app without any installations at 

the local machines (For instance, if JAVA is used as the 

language for implementation then Eclipse installation is not 

required at the local machine). 

 



 

 

E. Backend Enterprise Resource Planning (ERP) 

Integration  

As in most of the cases, there are backend ERP 

implementations that handle the maintenance order creation 

once there is a problem identified so that corresponding 

processes are triggered in the system. The integration 

services from the cloud cockpit will be used to create the 

inbound and outbound scenarios from the pipeline 

surveillance and prediction failure application. 

 

F. Security Concepts Handling  
The Identity and Access Management (IAM) services 

on cloud provide the authorization and authentication 

concepts, also with single sign-on features so that the 

pipeline surveillance application can plug and use these 

features without much development effort.  

 

G. Miscellaneous Admin Tasks  

The Cloud Administrator will be using admin cockpit 

to handle general cloud activities like user onboarding, 

technical service handling, tenant setup etc. 

 

IV. Converting Streamed Images to Meaningful Data 

Using Big Data Management Service 

 
The images of the pipeline region sent via the satellites 

are continuously streamed into the cloud cockpit. The Big 

Data as a Service incorporates ways to capture image 

transformations and ensure that they are consistent and 

support coherent data interpretations. This service supports 

the following features: 

• Stream processing engines with scanning capability 
on content 

• Filters to select the meaningful information for 
capture 

• Users must be able to define filter to check data 
relevant to identify alerts of spillage/maintenance 

• Storage and subsequent access 

This service aids in identifying the leakage patterns of 

pipeline and maintenance orders raised in the past for a 

company so that they can apply them in their machine 

learning model to improve pipeline health check cycle. 

Using the power of big data, we intend to perform 

“predictive pipeline maintenance” to not only better manage 

pipelines, sensors, and drones, but also to help mitigate time 

down on maintenance of pipelines and sometimes even 

improve safety. Organizations can also use such a service to 

track the health of pipelines and improve asset utilization. It 

can also allow them to more quickly respond to sudden 

leakages. 

 
Fig. 2.  Pipeline Leak Cycle; Depicting various elements of the ecosystem 

monitoring health and fixing leaks of a pipeline 

 

The goal of such continuous learning system is to ensure 

the highest possible quality of exposed model. 

In our research, we have used the Google Cloud Storage 

to store data collected from the IoT sensors. The data from 

IoT sensors were uploaded via files to the Google Cloud 

Storage bucket [21]. 

 

V. Integration to IoT Services for Data Analytics 

 

With the advancement in technology, Advanced RISC 

Machines (ARM) core processors, Global Positioning 

System(GPS) sensors and batteries are being used in drones 

today to collect data. These devices are fully autonomous, 

connected to the Internet and providing a perspective from 

the remotest area that’s not easily accessible for man. With 

Internet of Things, these drones do not need a separate 

device to operate them; our smart phones can be used to 

monitor the drones and the data collected by these drones 

can be stored on cloud. It is well-known that drones have 

the ability to gather up to half a terabyte per hour. Thus, we 

can conclude that drones can be used to collect big data, 

stored on cloud and then be properly analyzed using the 

latest advancements in data analytics to predict leakage in 

pipelines. 

An intelligent cloud platform can be the one-stop place 

to enable a drone to function effectively. Various 

smartphone services deployed on cloud can be integrated 

with the data collection service placed on the drone. These 

smartphone services are used to capture various operating 

parameters of the pipelines mentioned in [11] are stored 

using the Google Cloud Storage bucket as explained in the 

Data Management Section. Subsequently the data is used by 

the CloudML Engine which is explained in the Machine 

Learning section. The operating parameters of the pipeline 

that are captured include Temperature, CO2 partial pressure, 

Water Content, Flow Regime and Internal Pressure. 

As this data is stored on the cloud, services for data 

analytics hosted on the same cloud platform are used to 

derive meaningful analysis. Since these services are tightly 

integrated, identification of leakage in pipelines can be real-

time. This will also enable lesser loss of material and 



 

 

thereby, lesser pollution to the environment caused due to 

pipeline leakages. 

In [13], the authors affirm that telemetry data obtained 

from the drone’s sensors can be provided as a source of 

input to fault detection services. In our research, we have 

simulated such an integration on the cloud using data 

integration services with reverse proxy mechanisms.  

 

VI. Integration to Enterprise Resource Planning 

(ERP)Systems 

 

The platform should provide integration services 

between disparate data sources and applications accessing 

them. A cloud platform service must connect to an 

enterprise and collaborate with its internal IT systems and 

applications. In our use case we plan to integrate data 

outsourced from the cloud platform to a target On Premise 

ERP installation to trigger a maintenance order based on the 

result of prediction/AI. The integration service primarily 

provides similar data and software integration as to an in-

house integration application/service but uses the cloud for 

delivery or to enable integration. 

An integration scenario can be achieved in an Inbound 

and Outbound manner. Inbound integration involves data 

coming into to the cloud and Outbound integration refers to 

data/information exposed from the cloud. Any integration 

service delivered out of the cloud platform is generic and 

directly relatable to the default data model setup in the 

cloud. However, these services are generally consumed by 

applications and transformed according to the consuming 

application needs. In an inverse manner the inbound service 

is consumed by the cloud application. 

 

In our Pipeline surveillance use case the following 

Inbound and Outbound Services are proposed to be 

provided from the cloud platform. 

 

Proposed Inbound Integration Services 

• Generic Sensor Data(Information received from 
sensors placed on pipelines) 

• Image Information(Images streamed from any form 
of surveillance) 

• Drone Broadcasting Data(Drone signal feed) 

• Alert Information(Alerts received from any third 
party) 

Proposed Outbound Integration Services 

• Pipeline Health Check(General information 
specifying the health of a pipeline) 

• Leakage Alert(Notification of an existing or a 
possible pipeline breakdown) 

• Request Maintenance Order(To send all information 
required to raise a Plant Maintenance Order) 

 

VII. Handling of Identity and Access Management: 

 

Identity and Access Management (IAM) is one of most 

critical aspects for any software application. For enterprise 

applications, the complexity increases as there are also 

heterogenous types of systems that communicate to each 

other. In this case study, Security and IAM aspects become 

utmost critical as these pipelines may be owned by various 

stakeholders (varying from region to region). Also, there 

might be various vendors involved (again varying 

geographically) who are responsible for maintenance of the 

pipeline. 

Additionally, there might be a necessity to immediately 

create a Maintenance Order in the backend Enterprise 

Resource Planning system. Thus, authorization and 

authentication not only require the concepts for running an 

isolated app but to also need a secure and safe 

communication channel between cloud app and backend 

system. Thus, in a complex use case like this, multiple levels 

of authorization and authentications are required. 

Browser-based end-user single sign-on has become a 

commodity in the cloud, as basically all cloud applications 

support the Security Assertion Markup Language (SAML). 

There are SAML based authorization/authentication 

services provided on Cloud platforms (e.g. AWS IAM 

Services, Google Cloud Platform IAM Services) that help 

the mobile application development easier to implement 

from development perspective. These services provide 

mechanism for authentication, single sign-on, user 

management, and backend integration. Many of them also 

provide user self-services such as password management 

etc. From the Identity perspective, these services provide 

security features for protecting access to applications - 

authentication rules, two-factor authentication and 

delegated authentication to on-premise systems. 

 

VIII. Using Machine Learning Services for Predictive 

Maintenance: 

 

Existing Machine Learning Algorithms can help achieve 

Pipeline Failure Prediction 

With the advent of machine learning techniques, the ability 

to learn from past trends to predict future behavior makes it 

possible to predict an individual component's time until 

failure much more accurately. The conclusion drawn from 

the paper [17] shows that traditional data mining and 

Machine Learning techniques are unsuitable for handling 

big Data however, deep learning has the potential in dealing 

with such challenges.  

With a focus on the heterogenous characteristics of crude 

being supplied through pipelines [9], the proposed model 

helps us predict the risk of an equipment failure. In this use 

case, the dimensions used to machine learning algorithms 

are Pipeline Identifier, Quantity of crude, Under Water 

Corrosion Index, Thickness, Pressure, Temperature, 

Density and Timestamp. 

 



 

 

Details of Machine Learning Implementation 

In this research we used the R interface to Google 

CloudML [18] to deploy a model (based on deep learning) 

in the Google CloudML Engine which was built using the 

TensorFlow Package in R. The Google CloudML Engine 

helps us to monitor the scheduled jobs on the models 

deployed [19].  

A. Load Data 

All the input variables that describe the health of the 

pipeline are numerical which can be directly used for neural 

network in Keras. 

Note, the dataset has 9 columns which consist of eight 

input variables and one output variable. Once data is loaded 

we split the dataset into input variables (X) and output 

variable (Y) 

 
Fig. 3.  R code to load data and split input and output variables 

B. Define Model 

Models in Keras are defined as sequential layers. First, 

we ensure the input layer has the right amount of inputs. 

This can be specified when creating the first layer and 

setting it to 8 for the 8 input variables. Second, we define a 

hidden layer with dropout rate of 0.4 and 1 output layer has 

1 neuron to predict the class (pipeline needs maintenance or 

not) 

 
Fig. 4.  R code to define a Keras Model and create input and output layers 

C. Compile Model 

After defining the model, we compile it. We must 

specify the loss function to use to evaluate a set of weights, 

the optimizer used to search through different weights for 

the network and any optional metrics we would like to 

collect and report during training. 

In our case study, we have used logarithmic loss, which 

for a binary classification problem is defined in Keras as 

“binary_crossentropy”. We have also used the efficient 

gradient descent algorithm “adam” as it is an efficient 

default. Finally, because it is a classification problem, we 

collect and report the classification accuracy as the metric. 

 
Fig. 5.  R Code to compile the Keras Model 

D. Fit Model 

Now we have evaluated the model on the simulated data. 

We used the fit function in R to fit our model on our loaded 

data. We have run this for a small number of iterations (100) 

and used a small batch size of 10. These results can be 

further be optimistically chosen by trial and error. 

 
Fig. 6.  R code to Fit the Model on Training Data 

During the run of the R program, a message is seen for 

the 100 epochs along with the loss and accuracy for each 

epoch as shown in the figure below. 

 
Fig. 7.   Evaluation of epochs during Training Run 

E. Evaluate Model 

We had split our simulated data into train and test 

datasets. We then evaluated our model on our test dataset by 

using the evaluate function in R. 

 
Fig. 8.  R Code to evaluate a model on a test dataset 

The simulated dataset from the IoT sensors used to train 

and test our model reached the accuracy up to 0.98 and 

losses up to 0.006 when run for 100 epochs as seen in the 

figure below. 

 

Fig. 9.  Loss and Accuracy of the Model built using R when run for 100 

epochs.  

IX. CONCLUSION 

The proposed architecture of an Integrated Cloud 

Cockpit where every independent module exists as a service 

is the need of the hour for organizations striving to build 

end-to-end applications to provide their consumers with 

seamless navigations. With such an Integrated Cloud 

Cockpit, a complex scenario of pipeline surveillance and 

prediction of failures can be easily resolved by creating 

software applications powered by cloud computing. 
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