

Validation methodology for Nest Memory

Management Unit

Nandhini Rajaiah

IBM

Bangalore,India

nrajaiah@in.ibm.com

Jayakumar N Sankarannair

IBM

Bangalore,India

sjayakum@in.ibm.com

Larry S Leitner

IBM

Austin,United States

lleitner@us.ibm.com

 Abstract— The growing demand for performance

makes the processor logic design more complex, thereby

making post-silicon validation a critical and complex

step in processor development life cycle. There are

complex units with newer timing and control logic paths

which are almost impossible to exercise in regular

verification environments. One such unit to cater to

newer workloads in recent superscalar processors is the

Nest Memory Management Unit (NMMU), a memory

management unit for all I/O devices. This paper presents

some of the major challenges in validating Nest MMU. A

post-silicon validation framework is proposed to

mitigate these challenges. An asynchronous non-

blocking accelerator job submission model is used in this

approach to increase the translation traffic from the

agent to NMMU. Core MMU translation is used as the

reference model to validate nest MMU. The processor

core storage exception handlers are leveraged to

minimize the validation tool software development effort

and to increase the efficiency of validation as well. This

method makes use of an optimized threshold-based

checker to detect potential NMMU hardware issues. The

proposed methodology has been experimentally

evaluated in Power9 NMMU to demonstrate the

effectiveness of the method in providing considerable

stress to the unit.

Keywords—Post-silicon validation, address translation

mechanisms, microprocessor, accelerator, design verification

I. INTRODUCTION

 Hardware accelerators allow the machine to offload work

from the host CPU to the Accelerator. The Accelerator then

completes the computation and returns the results back to

the host CPU which relieves the host of precious

computation cycles. Accelerator chips are becoming an

important part of most processor designs where performance

is considered essential. Due to the increase in the volume of

data and inputs from the system, performance improvement

has become critical. This renewed perception of

performance has made accelerators an integral part of the

system [1].

 A unified virtual address space between the host CPU

cores and accelerators can largely improve the latency and

bandwidth of FPGAs and ASICs [2]. It also allows

accelerators to behave as if they are integrated into custom

microprocessors, which in-turn necessitates hardware

support for address translation. Supporting address

translation for customized accelerators is becoming a

complex task. In recent processors with state-of-the-art I/O

subsystem technology, this has been achieved using Nest

Memory Management Unit.

 The Nest Memory Management Unit (NMMU), as shown

in Fig. 1, is a complex integrated circuitry that resides

within each processor chip and provides address translation

support for multiple accelerator agents, including the on-

chip nest accelerator (NX), off-chip Nvidia Processing Unit

(NPU) and Coherent Accelerator Processor Proxy

(CAPP0/1) units. Nest MMU primarily communicates with

external units through the system bus (i.e., Fabric). The

NMMU also interacts with memory to perform table-walks

and to update the translation tables, as needed. In addition,

cache management instructions (Translation cache

invalidates) are sourced by the core/NCU (Non-Cacheable

Unit) of a given processor in the system and are snooped

and managed by the NMMU on behalf of the attached

accelerator units. The primary goal of NMMU is to provide

effective address (EA) to physical address (PA) translation

for the various Accelerator Agents within the processor's

storage subsystem without going through the main processor

core. This improves the response time of accelerator agents

working in virtual address space. In addition, the NMMU

protects the pages that are being translated by ensuring that

only tasks with the proper authorization can access them [4].

 This paper is organized as follows: Section II describes the

related works in this area and discusses the major challenges

involved in validating NMMU. Section III describes our

methodology used to validate NMMU. The experimentation

setup and results are summarized in Section IV. Finally, the

last section concludes the paper with a summary of the work

as well as future directions.

II. BACKGROUND

 The Memory management unit (MMU) of a processor

translates the effective address (EA)/virtual address (VA) to

physical address (PA). The MMU is one of the complex

units of a modern microprocessor and probably most

ambiguous and difficult unit to validate due to various

caching arrays such as Translation Look-aside Buffers

(TLB) and Page Walk Caches (PWC) [4]. The result of

translation, the physical address is not directly observable to

a program, hence failure is detected late in the test and make

it hard to debug the failure.

 Recent studies have presented a complete view of bug

models for the address translation mechanism (ATM) and

methods to detect ATM bugs using self-checking

mechanisms [3]. This work presents a comprehensive

experimental study on a state-of-the-art microarchitecture to

assess and identify the bugs in address translation caching

arrays and explains why these bugs persist across

mailto:nrajaiah@in.ibm.com
mailto:sjayakum@in.ibm.com
mailto:lleitner@us.ibm.com

generations. The methods used in this approach primarily

targets the verification and validation of address translation

subsystem of the processor core. Our paper addresses the

challenges involved in validating address translation sub-

system of accelerators and proposes a solution for

overcoming the challenges associated with the validation of

nest address translation unit.

A. Challenges

 The Nest MMU is a complex unit which requires rigorous

validation effort to make sure that the design is bug-free.

Apart from design complexity and short schedule, NMMU

validation poses many other challenges. One such major

challenge involved in NMMU validation, unlike core MMU

validation, is the need to have special accelerator agents to

generate high-rate traffic conditions sufficient enough to test

the unit. The second major challenge is that, unlike in core

address translation, where there are multiple processors

creating simultaneous traffic to stress the unit, in accelerator

environment, there are a few agents, through which

translation requests can be triggered to the NMMU. Unlike

in core address translation validation, where a single byte-

level operation such as load/store can trigger a translation

request to MMU, in nest, predominantly accelerator

operates on blocks of data, although, explicit work-loads can

be created with byte granularity for validation. And

moreover, the role of the core in job submission is to post

the control block into the accelerator queue. Then the

accelerator will pick up the job when it is free. There may

be a delay between the time when a job request is submitted

to the accelerator and the actual completion of the job. So

we need a mechanism to submit jobs asynchronously to the

accelerator, in order to increase the potential throughput of

checkout, i.e., translation requests to NMMU. Translation

faults from agents are presented to the processor as external

interrupts by a virtualized external interrupt hardware unit,

and moreover, applications running on a processor can be

interrupted asynchronously with address translation faults

from the accelerators. In this case, it is the responsibility of

the interrupt service routine running on the processor to

communicate the fault information to the corresponding

application running anywhere in the system through the

standard inter-process communication (IPC) mechanism.

The interrupt hardware unit was configured in such a way

that the interrupts were fairly distributed among different

applications running on the system. This approach enhanced

the efficiency of the tool by not swarming a specific

processor with interrupts.

III. METHODOLOGY

 A new method has been demonstrated to overcome the

major challenges associated with validation of NMMU. This

method uses Nest Accelerator Unit (NX) as the agent to

induce translation traffic to NMMU. Nest Accelerator Unit

comprises one cryptographic and two memory

compression/decompression engines (coprocessors). The

Nest MMU and core MMU share the same translation table

that maps effective addresses to physical memory. The main

objective of sharing the translation table between CPU and

accelerator is to use core MMU translation as the reference

to validate nest MMU and also to reuse existing core

interrupt service routines to set up nest translations. An

asynchronous job submission model has been used for

submitting jobs to the accelerator, where each processor

builds its own job-table with ‘n’ number of jobs and submits

each of the jobs to the targeted coprocessor and continues

with the next job without waiting for the previously

submitted job to complete. The intention of using this model

is to create a swarm of translations requests without waiting

for each request to complete.

 Fig.1. Nest Memory Management Unit

 The test environment includes multiple processors

configured to submit jobs to the accelerator in a bare-metal

configuration i.e., validation program is executed directly on

a system without any operating system. As part of the

processing of a job, the accelerator may generate a

translation request to NMMU. If a translation does not exist

for the address being processed NMMU performs a look-up

of its cache to see if a translation entry exists for the

requested EA. If so, it returns the physical address. If not, it

performs a table-walk to obtain the targeted PA. If the table-

walk also fails, an interrupt is generated to notify the

processor with the fault information, including the fault

status, faulted address. The translation faults are handled,

and translations are installed as described in Section III B.

After handling the faults, the processor now resubmits the

job to the accelerator and starts polling the coprocessor

status block. The expectation is that NMMU should not

generate the same fault again since the translations are now

available. The main function of the Virtual Accelerator

Switchboard (VAS) unit is to allow user-level software code

running on a processor core to directly access the Nest

Accelerator engines. Fig. 2 outlines the validation test setup

and control flow between the units involved in the nest

address translation process.

A. Testcase Generation

 The job to be performed by an accelerator is defined by an

agent-specific control block in memory. The control block

contains all the control information and pointers needed to

allow the accelerator to access the input parameters, input

data and to know where to store the output data and

finishing status. It also has a pointer to address translation

context. Translation context has control fields including

privilege levels, translation mode, partition-id and process-

id, to control the address translation. The control block used

by NX is called the Coprocessor Request Block (CRB). The

CRB contains all the information necessary for NX to

perform the coprocessor functions.

 The test case generator builds the coprocessor request

block and the translation context in the memory. It selects a

random coprocessor operation. Each processor pre-selects a

random translation context with pseudo-random values for

privilege levels, modes and the process-id, to increase the

test coverage.

 Test case generator generates random addresses for the

agent’s source and target area. It then builds coprocessor

request block and other control structures with fields

specific to the randomly selected coprocessor operation. The

context information for each job is stored in a data structure

in main memory. Thereafter, the job is dispatched to the

accelerator. Each of the processors can continue with other

tests. The status of submitted jobs is determined from the

coprocessor status block or from the processor job queue.

The coprocessor status block in memory is updated by the

accelerator upon job completion. the per-processor queue is

updated by the interrupt handling process, with fault

information, upon fault interrupt.

 Fig.2. Validation Test Setup

 One limitation with the proposed methodology is that,

over the course of test execution, translations will be

installed for most of the address pages and the number of

faults generated by the unit will be drastically reduced. To

alleviate this problem, two strategies were adopted. One, a

special irritator mode was used, where a randomly selected

processor invalidates translation addresses used by other

processors in the system, by changing their corresponding

translation entry valid bits to invalid, which in turn, triggers

storage interrupts. Another, after a predefined number of

test-cases, the accelerator job table is rebuilt with new

parameters for translation context and agent source/target

addresses for each job. This helps to maintain the fault

requests from the agent to an optimum level, sufficient

enough to stress the unit.

 Nest accelerator has a provision to specify source and

target memory locations as a list of Data Descriptor Entries

(DDE). Our method leverages this hardware facility to

increase the number of storage interrupts generated by the

agent. Each DDE of a job points to a different effective

address page. This provokes the agent to generate a

translation fault for each DDE processed by it.

B. Translation Generation

 The accelerator can interrupt any processor on the system

when it fails to find the translation for an address. The

translation entry to be installed for the address depends on

the translation context of the processor which submitted the

faulted job. The submitted processor number is determined

from the fault data structure in memory which is updated by

the accelerator on a page fault. The interrupted processor

sends the faulted address and other fault information to the

submitted processor through an inter-process

communication mechanism for further processing. The

submitted processor, on receipt of fault information from the

interrupted processor, attempts to access the data from the

faulted address. This generates a storage interrupt to the core

and the core storage interrupt handler sets up the required

translation entry for the address. The core and the nest

environments use the same translation table and hence the

new translation entry installed by the core is visible to the

nest. The validated core MMU and core storage interrupt

handlers are used in the validation of nest MMU. This

approach eliminated the need for developing explicit

interrupt service routines for NMMU fault handling and in-

turn reduced the software development effort for NMMU

validation.

C. Checker Logic

 An end-of-test checking method is used to check the

correctness of target data. The expectation here is that, with

a correctly functioning memory management logic, the

agent should find the correct physical address for a given

virtual source or target address and should read the right

source location and write the output data to the correct

location. Each job has two operations and the output of the

first operation is used as an input to the second operation.

The second operation is the reverse of the first one. At the

end of each job, data-checker will compare the expected

data (original source) with the actual data (output of the

second operation). Any incorrect translation is manifested

as a data mismatch and the mismatch is detected by the data

checker logic.

 To detect the case where NMMU is not able to resolve the

page fault, a checker code is used which increments a

counter value upon fault from NMMU. When the checker

has reached a maximum threshold value, it stops the test and

reports fail. The challenge with this approach is to identify

the right threshold value to halt the test execution. If the

threshold value is too high, there is a possibility that we may

miss a potential bug. For example, a specific processor

invalidates a mapping in the MMU cache, as part of setting

up its entry, but the invalidation signal is missed. In this

case, the test continues to use the old translation, which in

turn generates repeated faults. As part of processing these

faults, the subsequent invalidation may eventually go

through and the bug goes undetected. In this case, a high

threshold value is undesirable. On the other hand, if the

threshold value is too low, there is a possibility of false

alarm, indicating a test failure. For example, consider that a

specific processor has installed a translation entry in the

translation table. Now if some other processor replaces this

entry, then the first processor will fail although it had

installed the entry previously. Here, it would be appropriate

to give another chance for the processor to re-install the

entry, instead of abruptly stopping.

 Fig.3. Proposed validation methodology flow

 An optimal threshold value is determined by empirical

means, and this value varies depending on the work-load

and core configuration on which the test is running. Fig. 3

outlines the proposed validation methodology flow.

IV. EXPERIMENTATION AND RESULTS

 The proposed methodology was applied to validate Nest

Memory Management Unit (NMMU) of Power9 processor.

The test was run on both pre-silicon verification and post-

silicon validation environment.

 Our tool was implemented using a mix of assembly-level

and C programs. The kernel has procedures required to

enable the NX accelerator engines and setup configuration

registers. The test generator builds 16 NX jobs, each

comprising of two Coprocessor Request Blocks. VAS has

memory-mapped areas called send and receive window

contexts to establish a communication channel between user

process and the accelerator. As part of the system

initialization, the kernel configures VAS receive-window

contexts for each of the accelerator types that will be

accessed directly via user-level processes. The VAS receive-

window context points to the requested accelerator’s FIFO

(First In First Out) data structure in system memory. When

the processor wants to access an NX accelerator, it sets up a

VAS send-window context. The number of requests that can

be simultaneously submitted is controlled through a

hardware credit-based system. The test now configures a

CRB and uses the copy-paste facility [4] to copy the

contents of the request block to the accelerator’s receive

FIFO. The NX-unit accelerator receives notification of the

request and pulls it from the FIFO to be processed. When

the operation is complete, the processor is notified via an

interrupt, or it detects completion via polling, as configured

by the processor.

A. System-level simulator

 Developing validation software for complex hardware

units in the absence of the target hardware is often error-

prone. Many times, the test will fail due to software

infrastructure issues such as improper memory

configurations, illegal memory writes or software race

conditions. However, delaying software debug until the

hardware is available results in finding software defects too

late, thus increasing the time to market for the product. To

alleviate these problems, a system-level behavioral

simulator is used to detect software defects earlier in the

development cycle, effectively in parallel with hardware

development [6].

 The system-level simulator is a high-performance,
functional behavioral model of architecture mirroring the
hardware functionality that is visible to software. The lower

level represents the hardware and operating system choices

that can be used to execute the simulation environment.

Various user-level programs can be loaded on top of it. This

provided a virtual environment to validate design

assumptions, verify the developed code and ensure the

reliability of validation software.

B. Verification test bench

 The verification environment also forms an important

component of chip bring-up when the hardware arrives. Test

cases are easily moved back and forth between hardware

and simulation environments to perform root-cause analysis

of any unexpected hardware behavior. This allows us to find

workarounds and can also be used to find an occasional

subtle software bug.

 During pre-silicon verification, the test was run on an

internal ASIC-based simulation acceleration platform called

AWAN, also known as, Exercisers on Accelerators (EoA),

[5] to provide two benefits. First, to provide additional

functional coverage to pre-silicon testing. Secondly, it helps

us to use the pre-silicon coverage data to further enhance the

test-cases. In addition, tool development and testing are

done in the simulation environment before the actual

hardware is running in the laboratory.

 AWAN uses a massive network of Boolean function

processors each loaded with multiple logic instructions.

Typically, each run through the sequence of all instructions

in all logic processors in parallel constituted one machine

cycle, this implementing the cycle-based simulation

paradigm.

 Formal verification re-uses RTL (Register Transfer Level)

models abstracting blocks (i.e., units) with behaviorals [5].

Models exceeding 31 million gates have been simulated in

AWAN. These are essentially multi-unit models with heavy

black-boxing. Simulation speed depends on the

configuration, model size, model complexity, and the

amount of host interaction. The chip level model used in our

experiment had POWER9 chip with four cores together with

the L2 and L3 cache complex, the on-chip fabric, memory

controllers populated with behavioral DIMMs and the nest

complex constituting of VAS (Virtual Accelerator

Switchboard), NX, NMMU and XIVE (External Interrupt

Virtualization Engine) units.

 Internally, BugSpray, [7] an extension of VHDL is used

for functional coverage and assertion instrumentation. This

tool is used to efficiently annotate the RTL with assertion

and coverage events. BugSpray enables verification objects

to be portable across verification disciplines and across

hierarchies and allows for their reuse with design. The

coverage events provided by the design team helps in

assessing the efficiency of the validation tool used to stress

the device under test. Test coverage statistics were collected

using this coverage checker tool and analyzed to detect low

coverage areas. The test was enhanced to hit all the

coverage events to exercise the corner cases. Fig.4 shows

the pre-silicon verification setup.

Fig 4. Pre-silicon verification setup

C. Post-silicon validation

 The test was run on post-silicon environment, to achieve

the following objectives. First, to validate the correct

behavior of NMMU in various translation modes. Second, to

ensure that the unit is stressed well by collecting coverage

statistics and analyzing them. In addition, the proposed

method runs the way application is supposed to use

accelerator which verifies the interface between NMMU and

the associated hardware units such as NX, processor core,

External Interrupt unit. The post-silicon validation

procedure followed is described in Fig. 5.

System reset and initialization are done through boot

procedures.

Kernel and testcase generator are loaded into system

memory.

All cores are triggered to start execution.

Scheduling of test-case is done on different cores by

the kernel.

Scratch register is written which is polled for pass or

fail criteria.

 Fig 5. Post Silicon Validation procedure

 Experiments were carried out on a two-chip processor

with 12 cores per chip in SMT4 mode (4 threads per core)

using NX agent. Nest Accelerator consists of a

cryptographic engine which performs Advanced encryption

standard (AES) and Secure Hash Algorithm (SHA)

operations, 842 Compression/decompression engine and

GZIP compression/decompression engine, on each chip. All

the units are in the nest clock domain and run at a frequency

of 2MHz.

 The test used two methods to collect details about the

traffic stimulus to the unit. The tool has a mechanism to

record various events that happened during test case

execution. We used this data to collect information such as

the number of times a certain event is hit by the test during

the test execution, that gave us a measure of how well we

were exercising all the possible design paths of the unit. The

second method used the Hardware Performance Monitoring

Unit to record various events in the system.

 IBM processors have a special hardware facility, the

Performance Monitor Unit (PMU) [4], to collect the events

related to the operations in the processor. Each processor

core has six 32-bit PMC (Performance Monitor Counter)

registers, PMC1 through PMC6. These registers are

programmable, so you can specify what events to collect by

setting the Monitor Mode Control Register (MMCR). PMC

registers count the events when a processor executes

instructions. The post-silicon validation flow is shown in

Fig. 6.

Fig 6. Post Silicon Validation Flow

D. Results

 The tool generated event data and PMU data have been

used to provide feedback on the effectiveness of our tests, to

tell about the amount of stress created to the unit. This

helped us to enhance our test-cases to improve the coverage.

For instance, during the initial post-silicon test runs, the

total number of translation requests and the number of

checkout requests generated by the agent were low

compared to the maximum theoretical limit. The event data

analysis showed that the agents were reusing the

translations. The Translation Table irritator was enhanced,

and it increased the translation request and checkout request

counts to the desired level.

 To put this in perspective, Table I and II show samples of

event data collected primarily with Validation Test Suite 1

(VTS1) and Validation Test Suite 2 (VTS2) on a post-

silicon validation environment. VTS1 is the bare metal test

designed using this methodology to generate more

page/segment faults. VTS2 is the test created by

randomizing the authorization privileges of each page, to

generate more protection faults.

Table I

Statistics collected by coverage tool with VTS1
Coverage Parameters Values

Total translations 5440

Clean checkouts 3452

Total number of cycles 469341426

Cycles per translation 86275.99743

Translations per second 23181.418

Table II

Statistics collected by coverage tool with VTS2
Coverage Parameters Values

Total translations 4481

Clean checkouts 3812

Total number of cycles 237279016

Cycles per translation 52952.24

Translations per second 37769.88

 Fig. 7 shows the average number of checkout requests

generated by the agent measured by running validation suite

1 and 2 on the processor.

Fig.7. Number of checkout requests against time

The proposed approach proved invaluable for the validation

program in the following 3 areas:

1. Logic verification and validation: Some of the functional

bugs were uncovered, fixed, and re-checked at the early

verification stage. Tests were executed, accumulating tens

of billions of simulation cycles and ultimately ensuring a

high-quality tape out of the ASIC, reducing overall program

risk. After hardware arrived, the same test was leveraged

without any modification, to validate the unit.

2. Coverage and throughput enhancement: At pre-silicon

level, coverage metrics were used to quantify which design

functions have been reached by simulation. Test coverage

statistics were collected in the post-silicon phase and tests

were tuned to improve the coverage.

3. Foster rapid software development: The kernel software

for core interrupt handlers were reused in this approach.

This avoided duplicate development work for interrupt

handlers. We achieved the goal of reducing the software

development time, thereby shrinking the overall validation

tool development time.

V. CONCLUSION

 Validation is one of the most complex and critical tasks in

the current processor design process. Recent trends in

computer systems have evolved into many accelerators and

units to support new accelerator functionalities. Especially

for units which are external to the core, innovative

validation techniques are needed to achieve throughput and

efficiency. In summary, this paper discusses the major

challenges in validating accelerator address translation sub-

system. A validation methodology has been presented for

nest MMU, that uses an asynchronous accelerator job

submission model with an optimized threshold checker. The

framework is designed to use core MMU and core storage

interrupt handlers for installing translation for the nest

environment. This reduced the validation software

development effort by a considerable amount. The proposed

methodology has been successfully applied in stressing the

nest MMU unit of the processor and the results are

presented for the same. The test could reach up to 80% of

the maximum throughput supported by NMMU.

 The NMMU interface supports up to eight outstanding

translation requests from each of its agents. With all the four

agents, there can be up to 48 outstanding requests to

NMMU. To keep all the NMMU channels busy, it is good to

run multi-agent test-cases, where all the agents together can

swarm NMMU with translation traffic. In the future, the

innovative methods described in this paper can be extended

to other agents/units to generate multi-agent traffic to

NMMU.

ACKNOWLEDGMENT

 The authors of this paper would like to thank Manoj

Dusanapudi, IBM India Pvt. Ltd., for his valuable feedback

and support in completing this paper.

REFERENCES

[1] Semiconductor Engineering - The Secret Life of Accelerators,2017.
https://semiengineering.com/the-secret-life-of-accelerators/

[2] Accelerate the Future of Computing with Power
Acceleration,2018,https://www.linkedin.com/pulse/accelerate-future-
computing-power-acceleration-manoj-dusanapudi/?published=t

[3] George Papadimitriou; Athanasios Chatzidimitriou; Dimitris
Gizopoulos; Ronny Morad,“An Agile Post-Silicon Validation
Methodology for the Address Translation Mechanisms of Modern
Microprocessors”, IEEE Transactions on Device and Materials
Reliability,2016.

[4] Power9 Processor’s User Manual, 2018,
https://openpowerfoundation.org/?resource_lib=power9-processor-
users-manual

[5] J. Darringer et al. ,“EDA in IBM: past, present, andfuture”, IEEE
Transactions on Computer-Aided Designof Integrated Circuits and
Systems, 19(12):1476–1497,December 2000.

[6] K.-D. Schubert ; S. S. Abrar ; D. Averill ; E. Bauman ; A. C. Brown ;
R. Cash ; D. Chatterjee ; J. Gullickson ; M. Nelson ; K. A. Pasnik ; K.
Sugavanam ,”Addressing Verification challenges of heterogeneous
systems based on IBM POWER9”,IBM Journal of Research and
Development,2018

[7] Viresh Paruthi, “Large-scale application of formal verification:from
fiction to fact”, Formal Methods in Computer Aided Design,2010.

https://semiengineering.com/the-secret-life-of-accelerators/
https://www.linkedin.com/pulse/accelerate-future-computing-power-acceleration-manoj-dusanapudi/?published=t
https://www.linkedin.com/pulse/accelerate-future-computing-power-acceleration-manoj-dusanapudi/?published=t
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.George%20Papadimitriou.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Athanasios%20Chatzidimitriou.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dimitris%20Gizopoulos.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dimitris%20Gizopoulos.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ronny%20Morad.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7298
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7298
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://openpowerfoundation.org/?resource_lib=power9-processor-users-manual
https://ieeexplore.ieee.org/author/37683059800
https://ieeexplore.ieee.org/author/37086619464
https://ieeexplore.ieee.org/author/37086620713
https://ieeexplore.ieee.org/author/37086620145
https://ieeexplore.ieee.org/author/37086619415
https://ieeexplore.ieee.org/author/37086620221
https://ieeexplore.ieee.org/author/37086620846
https://ieeexplore.ieee.org/author/37086619945
https://ieeexplore.ieee.org/author/37086620773
https://ieeexplore.ieee.org/author/37086619709
https://ieeexplore.ieee.org/author/38543643500
https://ieeexplore.ieee.org/author/38543643500
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5766311

