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     Abstract— The growing demand for performance 

makes the processor logic design more complex, thereby 

making post-silicon validation a critical and complex 

step in processor development life cycle. There are 

complex units with newer timing and control logic paths 

which are almost impossible to exercise in regular 

verification environments. One such unit to cater to 

newer workloads in recent superscalar processors is the 

Nest Memory Management Unit (NMMU), a memory 

management unit for all I/O devices. This paper presents 

some of the major challenges in validating Nest MMU. A 

post-silicon validation framework is proposed to 

mitigate these challenges. An asynchronous non-

blocking accelerator job submission model is used in this 

approach to increase the translation traffic from the 

agent to NMMU. Core MMU translation is used as the 

reference model to validate nest MMU. The processor 

core storage exception handlers are leveraged to 

minimize the validation tool software development effort 

and to increase the efficiency of validation as well. This 

method makes use of an optimized threshold-based 

checker to detect potential NMMU hardware issues. The 

proposed methodology has been experimentally 

evaluated in Power9 NMMU to demonstrate the 

effectiveness of the method in providing considerable 

stress to the unit. 
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mechanisms, microprocessor, accelerator, design verification 

I. INTRODUCTION 

     Hardware accelerators allow the machine to offload work 

from the host CPU to the Accelerator. The Accelerator then 

completes the computation and returns the results back to 

the host CPU which relieves the host of precious 

computation cycles. Accelerator chips are becoming an 

important part of most processor designs where performance 

is considered essential. Due to the increase in the volume of 

data and inputs from the system, performance improvement 

has become critical. This renewed perception of 

performance has made accelerators an integral part of the 

system [1]. 

    A unified virtual address space between the host CPU 

cores and accelerators can largely improve the latency and 

bandwidth of FPGAs and ASICs [2]. It also allows 

accelerators to behave as if they are integrated into custom 

microprocessors, which in-turn necessitates hardware 

support for address translation. Supporting address 

translation for customized accelerators is becoming a 

complex task. In recent processors with state-of-the-art I/O 

subsystem technology, this has been achieved using Nest 

Memory Management Unit.  

    The Nest Memory Management Unit (NMMU), as shown 

in Fig. 1, is a complex integrated circuitry that resides 

within each processor chip and provides address translation 

support for multiple accelerator agents, including the on-

chip nest accelerator (NX), off-chip Nvidia Processing Unit 

(NPU) and Coherent Accelerator Processor Proxy 

(CAPP0/1) units. Nest MMU primarily communicates with 

external units through the system bus (i.e., Fabric). The 

NMMU also interacts with memory to perform table-walks 

and to update the translation tables, as needed. In addition, 

cache management instructions (Translation cache 

invalidates) are sourced by the core/NCU (Non-Cacheable 

Unit) of a given processor in the system and are snooped 

and managed by the NMMU on behalf of the attached 

accelerator units. The primary goal of NMMU is to provide 

effective address (EA) to physical address (PA) translation 

for the various Accelerator Agents within the processor's 

storage subsystem without going through the main processor 

core. This improves the response time of accelerator agents 

working in virtual address space. In addition, the NMMU 

protects the pages that are being translated by ensuring that 

only tasks with the proper authorization can access them [4]. 

   This paper is organized as follows: Section II describes the 

related works in this area and discusses the major challenges 

involved in validating NMMU. Section III describes our 

methodology used to validate NMMU. The experimentation 

setup and results are summarized in Section IV. Finally, the 

last section concludes the paper with a summary of the work 

as well as future directions.  

II. BACKGROUND 

   The Memory management unit (MMU) of a processor 

translates the effective address (EA)/virtual address (VA) to 

physical address (PA). The MMU is one of the complex 

units of a modern microprocessor and probably most 

ambiguous and difficult unit to validate due to various 

caching arrays such as Translation Look-aside Buffers 

(TLB) and Page Walk Caches (PWC) [4]. The result of 

translation, the physical address is not directly observable to 

a program, hence failure is detected late in the test and make 

it hard to debug the failure. 

   Recent studies have presented a complete view of bug 

models for the address translation mechanism (ATM) and 

methods to detect ATM bugs using self-checking 

mechanisms [3]. This work presents a comprehensive 

experimental study on a state-of-the-art microarchitecture to 

assess and identify the bugs in address translation caching 

arrays and explains why these bugs persist across 
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generations. The methods used in this approach primarily 

targets the verification and validation of address translation 

subsystem of the processor core. Our paper addresses the 

challenges involved in validating address translation sub-

system of accelerators and proposes a solution for 

overcoming the challenges associated with the validation of 

nest address translation unit. 

A. Challenges 

   The Nest MMU is a complex unit which requires rigorous 

validation effort to make sure that the design is bug-free. 

Apart from design complexity and short schedule, NMMU 

validation poses many other challenges. One such major 

challenge involved in NMMU validation, unlike core MMU 

validation, is the need to have special accelerator agents to 

generate high-rate traffic conditions sufficient enough to test 

the unit. The second major challenge is that, unlike in core 

address translation, where there are multiple processors 

creating simultaneous traffic to stress the unit, in accelerator 

environment, there are a few agents, through which 

translation requests can be triggered to the NMMU. Unlike 

in core address translation validation, where a single byte-

level operation such as load/store can trigger a translation 

request to MMU, in nest, predominantly accelerator 

operates on blocks of data, although, explicit work-loads can 

be created with byte granularity for validation. And 

moreover, the role of the core in job submission is to post 

the control block into the accelerator queue. Then the 

accelerator will pick up the job when it is free. There may 

be a delay between the time when a job request is submitted 

to the accelerator and the actual completion of the job. So 

we need a mechanism to submit jobs asynchronously to the 

accelerator, in order to increase the potential throughput of 

checkout, i.e., translation requests to NMMU. Translation 

faults from agents are presented to the processor as external 

interrupts by a virtualized external interrupt hardware unit, 

and moreover, applications running on a processor can be 

interrupted asynchronously with address translation faults 

from the accelerators. In this case, it is the responsibility of 

the interrupt service routine running on the processor to 

communicate the fault information to the corresponding 

application running anywhere in the system through the 

standard inter-process communication (IPC) mechanism. 

The interrupt hardware unit was configured in such a way 

that the interrupts were fairly distributed among different 

applications running on the system. This approach enhanced 

the efficiency of the tool by not swarming a specific 

processor with interrupts. 

III. METHODOLOGY 

   A new method has been demonstrated to overcome the 

major challenges associated with validation of NMMU. This 

method uses Nest Accelerator Unit (NX) as the agent to 

induce translation traffic to NMMU. Nest Accelerator Unit 

comprises one cryptographic and two memory 

compression/decompression engines (coprocessors). The 

Nest MMU and core MMU share the same translation table 

that maps effective addresses to physical memory. The main 

objective of sharing the translation table between CPU and 

accelerator is to use core MMU translation as the reference 

to validate nest MMU and also to reuse existing core 

interrupt service routines to set up nest translations. An 

asynchronous job submission model has been used for 

submitting jobs to the accelerator, where each processor 

builds its own job-table with ‘n’ number of jobs and submits 

each of the jobs to the targeted coprocessor and continues 

with the next job without waiting for the previously 

submitted job to complete. The intention of using this model 

is to create a swarm of translations requests without waiting 

for each request to complete. 

 

 Fig.1. Nest Memory Management Unit 

   The test environment includes multiple processors 

configured to submit jobs to the accelerator in a bare-metal 

configuration i.e., validation program is executed directly on 

a system without any operating system. As part of the 

processing of a job, the accelerator may generate a 

translation request to NMMU. If a translation does not exist 

for the address being processed NMMU performs a look-up 

of its cache to see if a translation entry exists for the 

requested EA. If so, it returns the physical address. If not, it 

performs a table-walk to obtain the targeted PA. If the table-

walk also fails, an interrupt is generated to notify the 

processor with the fault information, including the fault 

status, faulted address. The translation faults are handled, 

and translations are installed as described in Section III B. 

After handling the faults, the processor now resubmits the 

job to the accelerator and starts polling the coprocessor 

status block. The expectation is that NMMU should not 

generate the same fault again since the translations are now 

available. The main function of the Virtual Accelerator 

Switchboard (VAS) unit is to allow user-level software code 

running on a processor core to directly access the Nest 

Accelerator engines. Fig. 2 outlines the validation test setup 

and control flow between the units involved in the nest 

address translation process. 

A. Testcase Generation 

  The job to be performed by an accelerator is defined by an 

agent-specific control block in memory. The control block 

contains all the control information and pointers needed to 

allow the accelerator to access the input parameters, input 

data and to know where to store the output data and 

finishing status. It also has a pointer to address translation 

context. Translation context has control fields including 

privilege levels, translation mode, partition-id and process-

id, to control the address translation. The control block used 

by NX is called the Coprocessor Request Block (CRB). The 



CRB contains all the information necessary for NX to 

perform the coprocessor functions. 

   The test case generator builds the coprocessor request 

block and the translation context in the memory. It selects a 

random coprocessor operation. Each processor pre-selects a 

random translation context with pseudo-random values for 

privilege levels, modes and the process-id, to increase the 

test coverage.      

   Test case generator generates random addresses for the 

agent’s source and target area. It then builds coprocessor 

request block and other control structures with fields 

specific to the randomly selected coprocessor operation. The 

context information for each job is stored in a data structure 

in main memory. Thereafter, the job is dispatched to the 

accelerator. Each of the processors can continue with other 

tests. The status of submitted jobs is determined from the 

coprocessor status block or from the processor job queue.  

The coprocessor status block in memory is updated by the 

accelerator upon job completion. the per-processor queue is 

updated by the interrupt handling process, with fault 

information, upon fault interrupt. 

 

 Fig.2. Validation Test Setup 

   One limitation with the proposed methodology is that, 

over the course of test execution, translations will be 

installed for most of the address pages and the number of 

faults generated by the unit will be drastically reduced. To 

alleviate this problem, two strategies were adopted. One, a 

special irritator mode was used, where a randomly selected 

processor invalidates translation addresses used by other 

processors in the system, by changing their corresponding 

translation entry valid bits to invalid, which in turn, triggers 

storage interrupts. Another, after a predefined number of 

test-cases, the accelerator job table is rebuilt with new 

parameters for translation context and agent source/target 

addresses for each job. This helps to maintain the fault 

requests from the agent to an optimum level, sufficient 

enough to stress the unit.  

   Nest accelerator has a provision to specify source and 

target memory locations as a list of Data Descriptor Entries 

(DDE). Our method leverages this hardware facility to 

increase the number of storage interrupts generated by the 

agent. Each DDE of a job points to a different effective 

address page. This provokes the agent to generate a 

translation fault for each DDE processed by it. 

B. Translation Generation 

   The accelerator can interrupt any processor on the system 

when it fails to find the translation for an address. The 

translation entry to be installed for the address depends on 

the translation context of the processor which submitted the 

faulted job. The submitted processor number is determined 

from the fault data structure in memory which is updated by 

the accelerator on a page fault. The interrupted processor 

sends the faulted address and other fault information to the 

submitted processor through an inter-process 

communication mechanism for further processing. The 

submitted processor, on receipt of fault information from the 

interrupted processor, attempts to access the data from the 

faulted address. This generates a storage interrupt to the core 

and the core storage interrupt handler sets up the required 

translation entry for the address. The core and the nest 

environments use the same translation table and hence the 

new translation entry installed by the core is visible to the 

nest. The validated core MMU and core storage interrupt 

handlers are used in the validation of nest MMU. This 

approach eliminated the need for developing explicit 

interrupt service routines for NMMU fault handling and in-

turn reduced the software development effort for NMMU 

validation. 

C. Checker Logic 

   An end-of-test checking method is used to check the 

correctness of target data. The expectation here is that, with 

a correctly functioning memory management logic, the 

agent should find the correct physical address for a given 

virtual source or target address and should read the right 

source location and write the output data to the correct 

location. Each job has two operations and the output of the 

first operation is used as an input to the second operation. 

The second operation is the reverse of the first one. At the 

end of each job, data-checker will compare the expected 

data (original source) with the actual data (output of the 

second operation).  Any incorrect translation is manifested 

as a data mismatch and the mismatch is detected by the data 

checker logic. 

   To detect the case where NMMU is not able to resolve the 

page fault, a checker code is used which increments a 

counter value upon fault from NMMU. When the checker 

has reached a maximum threshold value, it stops the test and 

reports fail. The challenge with this approach is to identify 

the right threshold value to halt the test execution. If the 

threshold value is too high, there is a possibility that we may 

miss a potential bug. For example, a specific processor 

invalidates a mapping in the MMU cache, as part of setting 

up its entry, but the invalidation signal is missed. In this 

case, the test continues to use the old translation, which in 

turn generates repeated faults. As part of processing these 

faults, the subsequent invalidation may eventually go 

through and the bug goes undetected. In this case, a high 

threshold value is undesirable. On the other hand, if the 

threshold value is too low, there is a possibility of false 

alarm, indicating a test failure. For example, consider that a 

specific processor has installed a translation entry in the 

translation table. Now if some other processor replaces this 

entry, then the first processor will fail although it had 

installed the entry previously. Here, it would be appropriate 



to give another chance for the processor to re-install the 

entry, instead of abruptly stopping. 

 

 
  Fig.3. Proposed validation methodology flow   
 

   An optimal threshold value is determined by empirical 

means, and this value varies depending on the work-load 

and core configuration on which the test is running. Fig. 3 

outlines the proposed validation methodology flow. 
 

IV. EXPERIMENTATION AND RESULTS 

   The proposed methodology was applied to validate Nest 

Memory Management Unit (NMMU) of Power9 processor. 

The test was run on both pre-silicon verification and post- 

silicon validation environment.  

   Our tool was implemented using a mix of assembly-level 

and C programs. The kernel has procedures required to 

enable the NX accelerator engines and setup configuration 

registers. The test generator builds 16 NX jobs, each 

comprising of two Coprocessor Request Blocks. VAS has 

memory-mapped areas called send and receive window 

contexts to establish a communication channel between user 

process and the accelerator. As part of the system 

initialization, the kernel configures VAS receive-window 

contexts for each of the accelerator types that will be 

accessed directly via user-level processes. The VAS receive-

window context points to the requested accelerator’s FIFO 

(First In First Out) data structure in system memory. When 

the processor wants to access an NX accelerator, it sets up a 

VAS send-window context. The number of requests that can 

be simultaneously submitted is controlled through a 

hardware credit-based system. The test now configures a 

CRB and uses the copy-paste facility [4] to copy the 

contents of the request block to the accelerator’s receive 

FIFO. The NX-unit accelerator receives notification of the 

request and pulls it from the FIFO to be processed. When 

the operation is complete, the processor is notified via an 

interrupt, or it detects completion via polling, as configured 

by the processor. 

A. System-level simulator 

   Developing validation software for complex hardware 

units in the absence of the target hardware is often error-

prone. Many times, the test will fail due to software 

infrastructure issues such as improper memory 

configurations, illegal memory writes or software race 

conditions. However, delaying software debug until the 

hardware is available results in finding software defects too 

late, thus increasing the time to market for the product. To 

alleviate these problems, a system-level behavioral 

simulator is used to detect software defects earlier in the 

development cycle, effectively in parallel with hardware 

development [6]. 

 

   The system-level simulator is a high-performance, 
functional behavioral model of architecture mirroring the 
hardware functionality that is visible to software. The lower 

level represents the hardware and operating system choices 

that can be used to execute the simulation environment. 

Various user-level programs can be loaded on top of it. This 

provided a virtual environment to validate design 

assumptions, verify the developed code and ensure the 

reliability of validation software. 

B. Verification test bench 

   The verification environment also forms an important 

component of chip bring-up when the hardware arrives. Test 

cases are easily moved back and forth between hardware 

and simulation environments to perform root-cause analysis 

of any unexpected hardware behavior. This allows us to find 

workarounds and can also be used to find an occasional 

subtle software bug. 

   During pre-silicon verification, the test was run on an 

internal ASIC-based simulation acceleration platform called 

AWAN, also known as, Exercisers on Accelerators (EoA), 

[5] to provide two benefits. First, to provide additional 

functional coverage to pre-silicon testing. Secondly, it helps 

us to use the pre-silicon coverage data to further enhance the 

test-cases. In addition, tool development and testing are 

done in the simulation environment before the actual 

hardware is running in the laboratory. 

   AWAN uses a massive network of Boolean function 

processors each loaded with multiple logic instructions. 

Typically, each run through the sequence of all instructions 

in all logic processors in parallel constituted one machine 

cycle, this implementing the cycle-based simulation 

paradigm. 

   Formal verification re-uses RTL (Register Transfer Level) 

models abstracting blocks (i.e., units) with behaviorals [5]. 

Models exceeding 31 million gates have been simulated in 

AWAN. These are essentially multi-unit models with heavy 

black-boxing. Simulation speed depends on the 

configuration, model size, model complexity, and the 

amount of host interaction. The chip level model used in our 

experiment had POWER9 chip with four cores together with 

the L2 and L3 cache complex, the on-chip fabric, memory 

controllers populated with behavioral DIMMs and the nest 

complex constituting of VAS (Virtual Accelerator 

Switchboard), NX, NMMU and XIVE (External Interrupt 

Virtualization Engine) units.  

   Internally, BugSpray, [7] an extension of VHDL is used 

for functional coverage and assertion instrumentation. This 

tool is used to efficiently annotate the RTL with assertion 

and coverage events. BugSpray enables verification objects 

to be portable across verification disciplines and across 

hierarchies and allows for their reuse with design. The 



coverage events provided by the design team helps in 

assessing the efficiency of the validation tool used to stress 

the device under test. Test coverage statistics were collected 

using this coverage checker tool and analyzed to detect low 

coverage areas. The test was enhanced to hit all the 

coverage events to exercise the corner cases. Fig.4 shows 

the pre-silicon verification setup. 

 

 

Fig 4. Pre-silicon verification setup 

 

C.    Post-silicon validation 

   The test was run on post-silicon environment, to achieve 

the following objectives. First, to validate the correct 

behavior of NMMU in various translation modes. Second, to 

ensure that the unit is stressed well by collecting coverage 

statistics and analyzing them. In addition, the proposed 

method runs the way application is supposed to use 

accelerator which verifies the interface between NMMU and 

the associated hardware units such as NX, processor core, 

External Interrupt unit. The post-silicon validation 

procedure followed is described in Fig. 5. 

 

System reset and initialization are done through boot 

procedures. 

Kernel and testcase generator are loaded into system 

memory. 

All cores are triggered to start execution.  

Scheduling of test-case is done on different cores by 

the kernel.  

Scratch register is written which is polled for pass or 

fail criteria.  

   Fig 5. Post Silicon Validation procedure 

   Experiments were carried out on a two-chip processor 

with 12 cores per chip in SMT4 mode (4 threads per core) 

using NX agent. Nest Accelerator consists of a 

cryptographic engine which performs Advanced encryption 

standard (AES) and Secure Hash Algorithm (SHA) 

operations, 842 Compression/decompression engine and 

GZIP compression/decompression engine, on each chip. All 

the units are in the nest clock domain and run at a frequency 

of 2MHz.  

 

   The test used two methods to collect details about the 

traffic stimulus to the unit. The tool has a mechanism to 

record various events that happened during test case 

execution. We used this data to collect information such as 

the number of times a certain event is hit by the test during 

the test execution, that gave us a measure of how well we 

were exercising all the possible design paths of the unit. The 

second method used the Hardware Performance Monitoring 

Unit to record various events in the system. 

   IBM processors have a special hardware facility, the 

Performance Monitor Unit (PMU) [4], to collect the events 

related to the operations in the processor. Each processor 

core has six 32-bit PMC (Performance Monitor Counter) 

registers, PMC1 through PMC6. These registers are 

programmable, so you can specify what events to collect by 

setting the Monitor Mode Control Register (MMCR). PMC 

registers count the events when a processor executes 

instructions. The post-silicon validation flow is shown in 

Fig. 6.  

 

Fig 6. Post Silicon Validation Flow 

D. Results 

   The tool generated event data and PMU data have been 

used to provide feedback on the effectiveness of our tests, to 

tell about the amount of stress created to the unit. This 

helped us to enhance our test-cases to improve the coverage. 

For instance, during the initial post-silicon test runs, the 

total number of translation requests and the number of 

checkout requests generated by the agent were low 

compared to the maximum theoretical limit. The event data 

analysis showed that the agents were reusing the 

translations. The Translation Table irritator was enhanced, 

and it increased the translation request and checkout request 

counts to the desired level.  

   To put this in perspective, Table I and II show samples of 

event data collected primarily with Validation Test Suite 1 

(VTS1) and Validation Test Suite 2 (VTS2) on a post-

silicon validation environment. VTS1 is the bare metal test 

designed using this methodology to generate more 

page/segment faults. VTS2 is the test created by 

randomizing the authorization privileges of each page, to 

generate more protection faults.  



Table I 

Statistics collected by coverage tool with VTS1 
Coverage Parameters Values 

Total translations 5440 

Clean checkouts 3452 

Total number of cycles 469341426 

Cycles per translation 86275.99743 

Translations per second 23181.418 

       

Table II 

Statistics collected by coverage tool with VTS2 
Coverage Parameters Values 

Total translations 4481 

Clean checkouts 3812 

Total number of cycles 237279016 

Cycles per translation 52952.24 

Translations per second 37769.88 

    

    Fig. 7 shows the average number of checkout requests 

generated by the agent measured by running validation suite 

1 and 2 on the processor. 

 

    

 
 

Fig.7. Number of checkout requests against time 

 

The proposed approach proved invaluable for the validation 

program in the following 3 areas: 

1.  Logic verification and validation: Some of the functional 

bugs were uncovered, fixed, and re-checked at the early 

verification stage. Tests were executed, accumulating tens 

of billions of simulation cycles and ultimately ensuring a 

high-quality tape out of the ASIC, reducing overall program 

risk. After hardware arrived, the same test was leveraged 

without any modification, to validate the unit. 

2. Coverage and throughput enhancement: At pre-silicon 

level, coverage metrics were used to quantify which design 

functions have been reached by simulation. Test coverage 

statistics were collected in the post-silicon phase and tests 

were tuned to improve the coverage.  

3. Foster rapid software development: The kernel software 

for core interrupt handlers were reused in this approach.  

This avoided duplicate development work for interrupt 

handlers. We achieved the goal of reducing the software 

development time, thereby shrinking the overall validation 

tool development time. 

V.        CONCLUSION 

   Validation is one of the most complex and critical tasks in 

the current processor design process. Recent trends in 

computer systems have evolved into many accelerators and 

units to support new accelerator functionalities.  Especially 

for units which are external to the core, innovative 

validation techniques are needed to achieve throughput and 

efficiency. In summary, this paper discusses the major 

challenges in validating accelerator address translation sub-

system. A validation methodology has been presented for 

nest MMU, that uses an asynchronous accelerator job 

submission model with an optimized threshold checker. The 

framework is designed to use core MMU and core storage 

interrupt handlers for installing translation for the nest 

environment. This reduced the validation software 

development effort by a considerable amount. The proposed 

methodology has been successfully applied in stressing the 

nest MMU unit of the processor and the results are 

presented for the same. The test could reach up to 80% of 

the maximum throughput supported by NMMU.  

   The NMMU interface supports up to eight outstanding 

translation requests from each of its agents. With all the four 

agents, there can be up to 48 outstanding requests to 

NMMU. To keep all the NMMU channels busy, it is good to 

run multi-agent test-cases, where all the agents together can 

swarm NMMU with translation traffic. In the future, the 

innovative methods described in this paper can be extended 

to other agents/units to generate multi-agent traffic to 

NMMU. 
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