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Abstract
We propose a novel multi-temporal CNN architecture for end-
to-end classification of raw speech signal for 3 tasks, namely,
audio scene classification (ASC), speech emotion recognition
(SER) and native language (L1) recognition (NLR) in accented
English (L2) speech. Conventional CNNs use a fixed size ker-
nel (whether for image or 1-d signal classification) which cor-
responds to applying a filter bank, where each filter has a fixed
time-frequency resolution (i.e., fixed duration impulse response
and a fixed band-width frequency response), importantly with
a specific time-frequency trade-off. In contrast, in a way to
allow for multiple time-frequency resolutions, we use a multi-
temporal CNN architecture having multiple kernel branches (up
to 12 branches) each of different lengths, thereby allowing for
multiple filter banks with different time-frequency resolution to
process the input raw speech signal and create feature-maps
corresponding to different time-frequency trade-offs. Apply-
ing this architecture to end-to-end classification of the above 3
tasks is shown to offer consistent and significant performance
enhancements - 11-15% absolute in accuracy for the ASC task
(e.g. for up to 12 branches), 2-8% absolute in accuracy for the
SER task (e.g. 3, 6 branches) and 1.2-11.6% absolute in ac-
curacy and (Precision, Recall) of (1,1) with 6 branches for the
NLR task) for the multi-temporal case over the conventional
single-temporal CNN and in all 3 tasks and also outperform
state-of-art results in the respective tasks by other methods in
an end-to-end framework.
Index Terms: Multi-temporal CNN, end-to-end classification,
audio-scene classification, speech emotion recognition, accent
identification

1. Introduction
We propose a multi-temporal CNN architecture in an end-to-
end configuration, with emphasis on the ability of this new ar-
chitecture to perform enhanced representation learning from 1-
dimensional signals such as audio and speech, and address three
problems of interest in audio and speech recognition, namely, i)
audio-scene classification (ASC), ii) speech emotion recogni-
tion (SER) and iii) native language (L1) recognition (NLR) in
accented English (L2) speech as in our recent work [1, 2, 3].
This enhanced representation learning comes from the architec-
ture’s ability to perform a multi time-frequency analysis on the
input waveform using variable-sized kernels in its first convo-
lution layer and thereby create feature maps that correspond to
multiple spectrographs, each equivalent to a filter-bank analysis
with variable kernel (convolving filter) sizes.

Starting from the early introduction of the convolutional

neural-network (CNN) by Le Cun [4] for successful recogni-
tion of handwritten digit images, CNNs have come to be a well
established framework for end-to-end approaches (i.e. from raw
input), combining a powerful representational learning mecha-
nism [5] in its lower convolution layers and the discriminative
fully-connected higher layers for multi-class classification tasks
such as from raw images [6], speech spectrographic images [7],
speech-waveform [8], [9], audio-waveform [10], [11], music-
waveform [12], [13].

In this paper, we focus on a specific aspect of CNNs,
namely, the kernel sizes used in the convolutional kernels, and
point out that for applying CNNs on raw 1-dimensional signals
such as speech-, audio- and music-waveforms, it becomes im-
portant to ‘provide’ for a variable kernel size, to exploit and re-
solve the well known time-frequency trade-off inherent in such
1-dimensional convolution (or windowed linear filtering) op-
eration. While this applies to 2-dimensional images also, this
issue of having to address the time-frequency trade-off in the
application of a filter-bank kind of operation (what a set of ker-
nels in a CNN layer do) has been more or less overlooked in
the image-CNN community, and even more so in the 1-d sig-
nal processing community. While several related work does
indeed come close to handling multi-scale properties [14], it
is only the most recent work of [15], [16] that addresses this
issue for the first time, and proposes a multi-temporal architec-
ture for audio-scene classification (ASC), taking into account
the need for a variable time-frequency representational anal-
ysis of the 1-d signal such as audio-signal for the ASC task.
Within the similar notion of using parallel branches in the CNN,
[14] considers a ‘parallel CNN architecture’ with two branches
with two different 2-d kernels, each designed to capture tempo-
ral and frequency relationship in an image-like 80 × 80 input
of a log-amplitude transformed Mel-Spectrogram with 80 Mel-
bands spectral and 80 STFT frames temporal resolution, thus
not addressing directly the issue of time-frequency trade-offs
from raw 1-d waveform as done in [15], [16] and here.

The closest treatment in the image-CNN literature to this
notion of using variable kernel sizes is in the now well known
Inception network (or the GoogleNet) [17], where multiple im-
age kernels of sizes 1 × 1, 3 × 3 and 5 × 5 have been used
in the early CNN layers. However, the motivation for provid-
ing for these variable sized kernels has been more or less very
different from the fundamental time-frequency (spatial intensity
variation vs spatial frequency in the case of images) trade-off,
and as a consequence the advent of Inception did not really see
the emergence of a strong line of enquiry into such architectures
with variable kernel sizes in the 1-d signal community in order
to address the time-frequency trade-off using multi-temporal



convolutional analysis.

2. Focus and contributions
In this paper, our focus is along the following lines:

1. Audio-Scene Classification (ASC): We address the
ASC problem within the DCASE (Detection and Clas-
sification of Acoustic Scenes and Events) setting [18],
[19], using the DCASE-2017 and DCASE-2018 data-
sets for our work. CNN architectures and CNN based
approaches are among the most popular techniques and
systems submitted to DCASE challenges (e.g. as many
as 19 submissions among 49 in 2018), and we point to
the fact that neither these different contributions nor re-
lated work in speech recognition or image classification
using CNNs have attended to or brought to the fore the
issue of variable time-frequency analysis by means of
variable convolution kernel sizes.

2. Speech emotion recognition (SER): The SER problem
is one of the difficult classification tasks from the speech
signal since the features that are percetually clear as an
emotional category, are difficult to extract and quantify,
given that such features are highly spread over time,
partly in spectral information and partly in the supra-
segmental aspects of prosody and voice-quality, without
regard to the phonetic or linguistic content of the speech
(which of course may also bear information) [20]. Hence
the focus of much SER work has been on the definition
and extraction of meaningful discriminative features, and
this has been traditionally addressed using hand-crafted
features followed by various classifiers, progressing to
the current trend of ’feature bruteforcing’ where a large
(thousands) of spectral, prosodic and temporal features
are extracted, selected and applied discriminatively to a a
classifier [21]. This brings the focus on potential end-to-
end approaches, which learn the features from the signal
[22], [23]. In contrast to using conventional CNN archi-
tectures in such recent work on end-to-end SER, in this
paper our emphasis is on the ability of the proposed new
architecture to perform enhanced representation learning
from 1-dimensional signals such as speech for emotion
recognition

3. Accent-identification or native language recognition
(NLR): The accent-identification problem is acknowl-
edged to be one of the most difficult among speech-
based recognition tasks [24], which states it as much less
widely studied (than related problems of language identi-
fication). This is largely due to the fact the the L1 accent
origin in an accented L2 speech is manifest as the ‘L1
effect on L2’ in several different ways, a large part in the
acoustic realization of phones giving rise to phonologi-
cal differences, in the pronunciation of words, and other
suprasegmental aspects such as prosody of the speech.
This makes the features that can identify and discrimi-
nate L1 accent very difficult to extract and more so if
the task is definde as an end-to-end task, where hand-
crafted features are not brought into effect. To this end,
[24] also concludes ‘. . . there remains a broad variety of
further information that is conveyed in the acoustics of
speech and the spoken words themselves that have not
been dealt with either at all or . . .’. In this paper, we
emphasis on this aspect and the ability of the proposed
new CNN architecture to perform enhanced representa-

tion learning from 1-dimensional signals such as speech
for accent-identification.

In this paper, our contributions are along the following
lines:

1. To extend and generalize the multi-temporal architecture
of [15], [16] to a highly scaled number of multi-temporal
branches, allowing for creating multiple spectrographic
feature maps with a wide range of time-frequency reso-
lution trade-offs, equivalent to a conventional notion of
applying a set of filter-banks corresponding to feature-
maps that range from very narrow-band to very broad-
band spectrographic information. As a reference, a con-
ventional CNN architecture is a ‘single-branch’ architec-
ture, with some fixed kernel size, and will at best yield
one spectrographic time-frequency feature map some-
where within the range of narrow- to wide-band analysis.

2. To show the very significant performance gain for all the
3 tasks, namely, a) 11-15% absolute with 12 branches for
the ASC task, b) 2-8% absolute in accuracy for the SER
task with 3, 6 branches and c) (1.2-11.6% absolute) by
the multi-temporal architecture (with 6 branches), over a
conventional single-branch CNN operating at any of the
kernel sizes that is part of the multi-temporal architec-
ture.

3. To point to the fact that the results for ASC surpass the
early result of [16], which used up to 3 branches only,
and thereby establish the intrinsic nature of the multi-
temporal architecture to gain proportionately with an in-
crease in the number of branches due to progressively
enhanced representation learning ability (which poten-
tially can extend even beyond the 12 branches we have
experimented with, possibly for more complex tasks, e.g.
more number of classes or other tasks such as acoustic-
modeling for continuous phoneme-decoding or LVCSR).

4. To show that, for the ASC task, our best results (90%
accuracy) surpass the top system of DCASE-2018 chal-
lenge (81%) by as much as 9% absolute [25], [26], [27].

3. Multi-temporal CNN architecture
The multi-temporal CNN architecture considered here is as
shown in Fig. 1. This architecture is shown in two parts (as
in Fig. 1a) and b)): a) Formation of the multi time-frequency
spectrographic feature maps and b) From the feature maps to
fully connected layers. Fig. 1a) is the essential contribution in
this paper - namely, the multi-branch CNN architecture capable
of processing the raw 1-d signal input (audio signal for ASC) to
create multiple spectrographic feature maps with a wide range
of time-frequency resolution trade-offs. The feature maps in
‘C’ are a stack of 32 individual spectrographic maps, each of
length (66150, 13250, 6615, . . ., 441) corresponding to the 12
branches, and each of these are subject to max-pooling to reduce
them to a feature-map of size (M × 32)×441 or 384× 441 for
M = 12. This is shown in Fig. 1b). The feature map stack in
‘C’, on being reduced to a feature-map of size 384 × 441 for
M = 12, as shown in Fig. 1b) is further processed by 4 con-
volutional layers, each with 64, 128, 256 and 256 filters each
filter being a 3 × 3 kernel with a stride 1 × 1, yielding respec-
tively 64 (128 × 40), 128 (64 × 20), 256 (32 × 10) and 256
(16 × 5) feature maps on suitable max-pooling at each stage.
The final output of size 256× 16× 5 from the fourth convolu-
tion layer is used directly as input to the fully-connected layer
with an output layer with N soft-max outputs (corresponding to



Figure 1: Multi-temporal CNN architecture - a) formation of multi time-frequency spectrographic feature maps, b) from multi time-
frequency spectrographic feature maps to fully connected layers
N classes; e.g. N = 15 for the DCASE-2017 data-set; N = 10
for the DCASE-2018 data-set; N = 5 for the Speech Emotion
Recognition task for 5 emotional classes in IEMOCAP data-set
chosen here; N = 6 for the accent classes chosen from the
Wild-cat data-set used here).

4. Experiments and Results

4.1. ASC task

4.1.1. Data Corpus

We have used the DCASE-2018 Task1(a) - Acoustic Scene
Classification (ASC) dataset [19]. This challenge aims to clas-
sify a test recording into one of the 10 predefined classes that
characterizes the environment in which it was recorded. The
data-set used for this task is the ‘TUT Urban Acoustic Scenes
2018’ data-set. It consists of 10 acoustic environment scenes,
such as for example: airport, urban park, travelling by an un-
derground metro, indoor shopping mall etc. The sounds were
collected from European cities; for a same scene, different lo-
cations were considered for recording the sounds. The dataset
consists of 10-seconds audio segments from 10 acoustic scenes.
Each acoustic scene has 864 segments (144 minutes of audio)
comprising a total of 24 hours of audio. We have used a 70:30
train:test split and a 5-fold validation in all experiments. We
now report results from experiments conducted with the pro-
posed architecture on the ASC task, using the DCASE-2018
dataset [18], [19].

4.1.2. Results

First we show performance difference between the results ob-
tained using a similar architecture by [15], Zhu2 on DCASE-
2017 data-set and our architecture here for a 3-branch system
(with kernels sizes 11, 51, 101). Fig. 2 shows the accuracy (%)
of these systems. It can be noted that the proposed system offers
an enhanced performance over the one reported by [15], [16].
More importantly, the all-3 branch system is significantly bet-
ter than any of the single-branch (conventional CNN) system of
[15], [16] on DCASE-2017, our system on DCASE-2017 and
our system on DCASE-2018.

Figure 2: ASC Task: Performance of proposed multi-temporal
CNN architecture on DCASE-2017 and DCASE-2018 data-
sets, and comparison to the related architecture of [15, 16] on
DCASE-2017

Fig. 3 shows the accuracy of ASC task for these cases
(the four ‘All # Branch’ plots have symbols at the kernels sizes
making up the All-branches). The following can be noted:
The individual single-branch performances are considerably
lower than all the multi-branch performances, with no particular



Figure 3: ASC Task: Performance of proposed multi-temporal
CNN architecture for varying number of multiple sub-sets of
branches - 3, 6, 9 and 12 and comparison with single-temporal
individual branch performances

single-branch offering any specific advantage over others, while
the joint multi 3-branch performance is 5% better than the best
single-branch performance, validating the importance of having
a joint time-frequency feature map. This performance increases
significantly with increase in the number of branches M up to
12, with a performance gain of 11-15% (absolute) for the 12-
branch system over the worst/best single-branch performances.
This is a remarkable gain, considering most performance en-
hancements do not normally yield a quantum of the order of
11-15% (absolute)- which in this case is obtained by a direct
consideration of the representation learning mechanism in the
first layer of the CNN architecture.

4.2. SER task

4.2.1. Data Corpus

We have used the IEMOCAP (Interactive Emotional Dyadic
Motion Capture) database [?] for the work here. IEMOCAP
is an acted, multimodal and multispeaker database, collected
at SAIL lab at USC. It consists of dyadic sessions where ac-
tors perform improvisations or scripted scenarios, specifically
selected to elicit emotional expressions. IEMOCAP database is
annotated by multiple annotators into categorical labels, such as
anger, happiness, sadness, neutrality, as well as dimensional la-
bels such as valence, activation and dominance. We have used a
single evalautor results to label the data as a particular class and
merged all data so labeled as a class. Given the large variations
in durations of each such class data (e.g. 17sec (disappoint-
ment), 17220 sec (frustration), we choose 5 classes namely,
Anger, Frustation, Excited, Neutral and Sad (i.e., N = 5 in
Fig. 1) that each each have 2460 sec of speech. We used a
70:30 (train, test) split and have carried out a 5-fold validation
in all experiments.

4.2.2. Results

For the SER task, we consider the most important aspect of
the multi-temporal architecture studied here, namely, the per-
formance gain of a multi-temporal system over a single-branch
(conventional CNN) system for increasingly larger number of
branches. For this, we have considered number of branches
M = 1, 2, . . . , 12, and obtained the i) individual branch per-
formance for each of 12 single-branch architectures with kernel
sizes 11, 51, 101, 151, 201, 251, 301, 501, 601, 751, 1001 and
1501 and, ii) the performance gain of multi-branch architec-
tures for different M = 3, 6, 9, 12 - termed 3-branch, 6-branch,
9-branch and 12-branch architecture - across themselves (i.e., as
the number of branches M increases in a M -branch system) and
also with respect to the individual single-branch performances
in (i). Fig. 4 shows the accuracy of SER task for these cases.

Figure 4: SER Task: Performance of proposed multi-temporal
CNN architecture for varying number of multiple sub-sets of
branches - 3, 6, 9 and 12 and comparison with single-temporal
individual branch performances

The following can be noted: The individual single-branch
performances show considerable variation (of over 6%, from
45% to 51%) in their performances across the 12 different
kernel-sizes, with a few particular single-branches (at kernel
sizes 51, 101, 151 and 201) offering a specific advantage over
others. The multi 3-branch and 6-branch performances (co-
inciding at 53%) is better than this best single-branch perfor-
mance by about 2%, but 8% better than the worst single-branch
performance, validating the importance of having a joint time-
frequency feature map, to combine the individual branch fea-
ture representation and to yield a consistent performance, which
does not seem possible with the range of individual single-
branch cases, where it becomes necessary to experiment with a
range of such kernel-sizes to arrive at a best performance among
a highly varied performance with kernel size. The multi-branch
performance saturates here, with 9-branch and 12-branch of-
fering 1% less than the best (for 3 and 6 branch cases) which
is possibly due to the estimation difficulty in larger number of
parameters with increase in the architecture complexity for the
given training data conditions. The overall performance gain is
therefore 2% (absolute) over the best individual single-branch
case, and up to 8% (absolute) gain over the entire range of lesser
performing single-branch cases. The results demonstrate the ad-
vantage of the multi-temporal architecture over a single tempo-
ral architecture (the conventional CNNs) - for which it is clear
that the best kernel size has to be pre-determined for a given
task, such as the kernel sizes of 51, 101, 151 offering the best
performance for the SER task here, but which is obviated by the
use of a multi-temporal architecture with even as small as 3 or
6-branches.

4.3. Accent identification task

4.3.1. Data Corpus

We have used the multi-accented dataset ‘Wildcat Corpus of
Native and Foreign-Accented English’ [?] which has speak-
ers from 12 different L1 (native language) origin speak-
ing L2 accented English. These L1 groups are Chinese,
Farsi, Indian, Italian, Japanese, Korean, Macedonian, Na-
tive, Russian, Spanish, Thai, Turkish. The scripted au-
dio files with English as a target language (i.e. as the ac-
cented L2 language) were considered for this experiment.
All speech files per speaker origin were merged and labeled
by the speaker origin. Of these, considering minimum du-
ration requirements per class, 6 origin (L1) classes - ’Chi-
nese’,’Indian’,’Korean’,’Native’,’Spanish’,’Turkish’ - were cho-
sen, i.e. N = 6 in Fig. 1. The duration of speech data per class
was 2210 secs. We have used a 70:30 (train,test) split of this
data and performed a 5-fold validation in all experiments.



4.3.2. Results

Fig. 5 shows the accuracy of accent-identification task in terms
of the performance gain of a multi-temporal system over a
single-branch (conventional CNN) system for increasing num-
ber of branches, exactly as in the SER task.

Figure 5: Accent-identification task: Performance of proposed
multi-temporal CNN architecture for varying number of multi-
ple sub-sets of branches - 3, 6, 9 and 12 and comparison with
single-temporal individual branch performances for M=1 to 12

The following can be noted: The individual single-branch
performances show considerable variation (over 10%) in their
performances across the 12 different kernel-sizes, with only one
particular single-branch (at kernel size 51) offering an advan-
tage over others. The multi-branch performance increases sig-
nificantly with increase in the number of branches M to 6, with
a performance gain of 1.2% (absolute) over the 3-branch case
and the best individual single-branch case, and up to 11.6% (ab-
solute) gain over the entire range of poorly performing single-
branch cases. The mutli-branch performance seems to saturate
at 6 branches, with marginal variations for M = 9 and 12, with
a slightly noticeable decrease, which is possibly due to the pa-
rameter estimation difficulty with increase in the architecture
complexity for the given training data conditions. The results
demonstrate the advantage of the multi-temporal architecture
over a single temporal architecture (the conventional CNNs)
- for which it is clear that the best kernel size has to be pre-
determined for a given task, such as the kernel size of 51 offer-
ing the best performance for the accent-identification task here,
but which is obviated by the use of a multi-temporal architec-
ture with even as small as 3 or 6-branches.

We also present the (Precision, Recall) measures in Fig. 6
for the multi-temporal architecture cases (as in Fig. 5 for %
Accuracy) and the individual single-temporal architectures. As
with % Accuracy in Fig. 5, the Precision, Recall measures are
poor (in fact, much poorer than the % Accuracy) for the single-
temporal cases, with no definitive indication of which kernel-
size can offer the best performance, requiring these to be exper-
imented with a priori before determining which kernel might be
best for a given task. In comparison, the multi-temporal archi-
tecture, particularly M = 6 and above, offer remarkably high
Precision, Recall, with M = 6 peaking at a Precision, Recall of
1.0.

Figure 6: Accent-identification task: Precision (left), Recall
(right) of the multi-temporal architectures vs the individual
single-temporal architectures

5. Conclusions
We have proposed and studied a novel multi-temporal CNN
architecture for three end-to-end tasks, namely, ‘audio-scene
classification’ (ASC) from raw audio signal, ‘speech emo-
tion recognition’ (SER) from raw speech signal and ‘accent-
identification’ (or ‘native language recognition’ - NLR) from
raw speech signal, as a generalization of a conventional single-
branch CNN. The architecture is shown to offer consistent and
significant performance enhancements - e.g. 11-15% absolute
in accuracy for the ASC task (e.g. for up to 12 branches), 2-
8% absolute in accuracy for the SER task (e.g. 3, 6 branches)
and 1.2-11.6% absolute in accuracy and (Precision, Recall) of
(1,1) with 6 branches for the NLR task) - for the multi-temporal
case over the conventional single-temporal CNN and also out-
performs state-of-art results for these tasks.
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