
Methodology for Logic Optimization Post Synthesis

Sarala Gumma,

Design Engineer

Intel Corporation

Bangalore, India.

sarala.gumma@intel.com

C2DG Core Group

Makandar, Syed M Md Zaid

Design Engineer

Intel Corporation

Bangalore, India.

syed.m.zaid.makandar@intel.co

m

C2DG Core Group

Neelam Maniar C

Design Engineer

Intel Corporation

Bangalore, India.

neelam.c.maniar@intel.com

C2DG Core Group

Kousik Debnath

Design Automation Manager

Intel Corporation

Bangalore, India.

kousik.debnath@intel.com

C2DG Core Group

Abstract - Timing miscorrelation between DC compiler & timing

signoff tool ends up with many setup violations and leaves scope for

further logic optimization. Unstable Floorplan & Timing constraints

adds to the huge timing convergence effort. In this paper, we have

explored the opportunity of logic optimization post synthesis freeze.

A methodology for absorbing changes at the correct stage of PnR

flow is formulated. An automated way was developed to find logic

optimization candidates from the timing signoff tool and improve

setup timing by optimizing them. Data showing TNS improvement by

25% was presented.

Keywords — Logic Optimization, Timing Convergence, High

Speed Design.

I. INTRODUCTION

Timing convergence of multimillion gate designs with

aggressive frequency push is a huge challenge. Stringent project

timelines to achieve fast time-to-market aggravate the situation. The

conventional method for physical design includes RTL synthesis,

Placement, Clock tree synthesis, detailed route, and sizing

Optimization. Design Compiler, maps technology independent RTL

to the given technology specific netlist. RTL, I/O timing and

floorplan constraints are inputs to DC. The IC Compiler place and

route system does placement, clock tree synthesis, routing and

optimization for complex designs on the synthesized netlist.

 Timing miscorrelation between the DC/ICC and timing signoff

tool exists due to different extraction engines, fill methodologies,

timing engines, etc. This leaves behind many residual setup paths.

Unstable I/O timing and floorplan constraints require multiple loops

of Synthesis and PnR during the project making timing convergence

difficult. RTL changes during the course of the project require logical

ECO and contribute new paths to TNS.

Additional manual timing convergence effort is required from

designer despite having powerful tools like DC/ICC. Designer can

control the priority of critical paths by altering cost function of

DC/ICC through commands like set_path_margin, group_paths, etc.

For optimizing interconnect delay, the designer can provide inputs to

ICC like specifying priority nets, placement bounds, etc. Clock tree

synthesis stage of ICC takes inputs from the user and adds clock

buffer and performs clock tuning for converging critical setup

violations. Lagrangian Relaxation (LR) [1] based optimization tools

optimally size cells by considering the ratio of load and drive

strength. Nevertheless, many setup violations are left encouraging to

explore innovative methods.

This paper targets reduction in effort of timing convergence by

automating identification and absorption of Logic Optimization

opportunities. Instances of back to back connected 2 input static

gates are more prevalent in the designs. Core library provides a rich

catalog of stacked gates. Opportunities such as optimizing NAND2-

NOR2-INV to NAND3 often go unnoticed. This results in saving

one stage delay. There are also patterns saving 2 stage delays such as

NAND2-NOR2-NAND2 to NAND4. Absorbing inversion is

another overlooked opportunity, this involves propagation of

inversion to either fan-in or fan-out logic cone. Propagation of

inversion to the logic depth of one is easily accomplished by

identifying patterns such as INV-XOR to XNOR. Novel quality-

check rule called “Logic-Optimization” is introduced. This paper

talks about Identifying & Absorbing logic optimizations in an

automated fashion and defines a methodology for the same.

II. PATTTERNS

Reduction of the number of stages in a timing path saves delay. This

can be done by merging two simple gates into a complex stacked

gate (or) by absorbing inverters into preceding or succeeding gates.

PATTERNS
Optimized

PATTERN

AND_AND, AND_NAND, NAND_OR,
NAND_NOR_INV, NAND_NOR_XNOR,

NAND_NOR_XOR, XNOR_NAND_NOR,

XOR_NAND_NOR

NAND03

OR_OR, OR_NOR, NOR_AND, NOR_NAND_INV,

NOR_NAND_XNOR, NOR_NAND_XOR,

XNOR_NOR_NAND, XOR_NOR_NAND

NOR03

AND_OR, AND_NOR, NAND_AND,

NAND_NAND_INV, NAND_NAND_XNOR,

NAND_NAND_XOR, XNOR_NOR_NOR,
XOR_NOR_NOR

AOI012

OR_AND, OR_NAND, NOR_OR, NOR_NOR_INV,

NOR_NOR_XNOR, NOR_NOR_XOR,

XNOR_NAND_NAND, XOR_NAND_NAND

OAI012

Table 1: Patterns saving one stage delay

mailto:sarala.gumma@intel.com
mailto:syed.m.zaid.makandar@intel.com
mailto:syed.m.zaid.makandar@intel.com
mailto:neelam.c.maniar@intel.com
mailto:kousik.debnath@intel.com

Table 2: Patterns saving two stage delay

Patterns having the scope of optimization such as AND-AND are

searched in synthesized design and reported. For example here,

AND_NAND indicates serially connected 2 input AND gate with 2

input NAND gate. This can be converted to 3 input NAND gate

(NAND03).

Table 3: Patterns where we can absorb inversion

Absorbing inversion in preceding or succeeding stages results in

reduction of number of stages. Based on observation that both XOR

and XNOR gates take similar delays, any redundant inverters in their

inputs can be removed. Inverters connected to latch also can be

removed since Core library provides PassGate-INV, INV-PassGate

type latches in addition to conventional INV-PassGate-INV

latch.

III. IDENTIFICATION & ECO PATCH GENERATION

A. Pattern Identification

Complex designs generally have more than millions of gates.

Finding all the possible patterns out of the millions of gates cannot

be checked manually. A proper mechanism has been defined to find

possible patterns discussed in section II for the optimization. Pattern

definition requires to specify pattern, topology, interface, constraint

and action.

Then we iterate over the design's nets using Search and Query

command “if_enet” and print all nets for which patterns are obeyed.

Algorithm is listed below

Results by the developed utility are reported as shown in Table 4.

More properties of the net such as hold margin, route length, etc. can

be added to report. This report can be used to implement ECOs on

selective nets manually to converge highly critical paths, instead one

can absorb all ECOs automatically using ICC shell based script

which will be discussed in the following section.

Table 4: Utility Report of identified LogicOpt Patterns

One can also code ICC shell based scripts to identify the patterns for
logic optimization right after logic synthesis.

B. LogicOpt ECO generation

ICC Shell-based script reads patterns produced by the utility and

generates an ECO Patch. It places new complex gate (U12 in Figure

3) at average location of existing gates (U1, U2 in Figure 3), deletes

existing gates and addresses connectivity. Drive strength of new cell

is set to the drive strength of the last cell (U2 in Figure 3) in cells

involved in optimization. Due to the reduction in the number of

stages, preceding stages must be upsized and this will be taken care

of by sizing tools.

Figure 1: Example of Logic Optimization

Additional constraints are checked before generating ECOs for

a given pattern

 Proximity: If gates involved (U1, U2 in Figure 1) in

Optimization are far, it is better to have more stages to

reduce interconnect delay and maintain signal integrity.

 Route length: Many nets will be touched during

absorption of LogicOpt pattern. If a touched net is too

PATTERN Optimized PATTERNS

NAND_NOR_NAND NAND04

NAND_NOR_NOR AOI013

NOR_NAND_NAND OAI013

NOR_NAND_NOR NOR04

PATTERNS Optimized PATTERNS

AND_INV, OR_INV,
AND_BUF, OR_BUF

NAND, NOR, NAND-
INV, NOR-INV

XOR_BUF, XNOR_BUF XNOR INV, XOR INV

INV_XOR, INV_XNOR,

BUF_XOR, BUF_XNOR

XNOR, XOR, INV-

XNOR, INV-XOR

AND_XOR, OR_XNOR
NAND XNOR, NOR

XOR

AND_XNOR, OR_XOR
NAND XOR, NOR

XNOR

[INV-PG-INV Latch] - BUF [INV-PG Latch]- INV

BUF-[INV-PG-INV Latch] INV-[PG-INV Latch]

#NetName Reason
Setup

Slack
Is_Clk Total_cap

module:n21 XNORGATE_BUF 0.0088 0 0.043193

long, zroute might not do optimal routing, hence

degrades the overall delay. One way to solve this issue is

to avoid ECO generation, More will be discussed in the

following section

 Margin: Script is setup and hold slack aware. It does not target

logic optimization at the cost of potential hold violation.

 Fanin nets to the optimized complex gate where inverters will

be added (nets2in in Figure 1) should have enough positive

margin.

IV. METHODOLOGY

Methodology shown below in Figure 2 is formulated to get best

gains out of logic optimization.

Figure 2. Flowchart defining Logic Optimization Utility

LogicOpt patterns are identified on an optimally sized place and

route database. A report containing patterns gets dumped and this is

used an input for the auto-fixer file generation. User can inspect the

patch manually and absorb changes selectively for handful of

patterns of their interest. For back annotating all probable LogicOpt

patterns, based on route criticality of the design following modes are

to be followed.

ECO mode: If design complexity is low and sufficient routing

resources are available, LogicOpt patterns can be back annotated in

ECO mode. After the back annotation, placement of the newly added

cells is legalized. Opens, shorts & DRCs are cleaned with soft route,

incremental search and repair. Due to reduction in number of stages,

stages preceding optimized gates need to be upsized, this will be

addressed with LR optimization flow.

Rip and Route mode: ECO patch of logical optimization

requires cleanup of many opens, shorts & DRCs. In high

complex designs, due to non-availability of routing resources,

incremental ICC-route creates jogs and ends up choosing lower

metal resources for nets connecting newly added gates. Hence

back-annotation in ECO mode is not suitable. Back –

annotation pre CTS, pre Route isn’t recommended since clock

latencies are ideal and path profile will change substantially.

Post Route, to facilitate ICC with availability of all tracks, all

signal routes are ripped off post back annotation of LogicOpt

ECO patch. After signal route rip-off, design will be taken

through all phases of ICC Route. After route stage, sizing based

sizing optimization is applied.

V. RESULTS

As defined in Section II, patterns are categorized as Absorbing

inversion, 1Stage gain & 2Stage gain. Table 5 shows No. of patterns

identified in various designs per category. The No. of patterns in each

design makes it evident that even after DC, there is scope for Logic

Optimization. Cell count reduction is proportional to No of patterns

found in design.

Design Absorbing

Inversion

1Stage Delay

Gain

2 Stage

Delay Gain

DUT1 148 82 34

DUT2 187 162 142

DUT3 96 117 19

DUT4 111 78 25

DUT5 103 271 162

DUT6 109 156 83

Table 5: Number of patterns per-category

 Figure 3 shows significant left over in setup TNS in

sign off tools after DC/ICC and LR optimization. The logic

optimization utility discussed reduces average TNS across

designs and voltage corners by approximately 25%. Average

leakage reduction by 3% and Area reduction by 0.5% is

observed across the designs.

Load Post-ICCRoute mw/ndm

Generate & source auto-

fixer TCL

Legalize the placement &

ICC full detailed routing

Is Design

Route

Critical?

Rip off signal routing in

the entire design

Save design & add

 Metal DFM Fill

Run RC extraction &

Run STA

Incr Soft route (zroute) &

 Incr legalize_placement

Run LR opt &

Re-run STA

Run STA and identify

patterns using utility

NO (ECO patch

Mode)

YES (Rip & Reroute Mode)

Figure 3: Results of TNS reduction seen in various designs

VI. SUMMARY

Many LogicOpt patterns are left un-optimized by DC due to

various reasons as discussed. This is evident from Table 5 which

shows the number of patterns identified per-category in various

designs. With correct flow & automation, these patterns can be back

annotated for good TNS gains (25%). Since all possible patterns in

design are reported, designer can also opt to fix patterns of their

interest selectively.

As discussed in Section IV, fixing all patterns can result in timing

degradations, if routing, sizing and timing criticality of other fanins

is overlooked. Automation of ECO patch generation is made aware

of these variables. As part of future work, more patterns will be

identified and added. LogicOpt flow will be integrated to Synthesis

and PnR Flow reducing effort of designer.

VII. ACKNOWLEDGMENTS

The authors would like to acknowledge Vikas Gadi, Satish

Sethuraman, Arpit Gandhi, Pratik Kamat, Eashwar Raghuraman,

Arun Seetharaman, Akanksha Singh, Satish Cheekatla, and

Ranganatha Gowda for their contributions to the methodologies,

flows, enhancements, data generation and helping in make right

decisions during the course of development of the algorithm.

VIII. REFERENCES

1. Chung-Ping Chen, C.C Chu, D.F. Wong, "Fast exact

simultaneous gate and wire sizing by Legrangian

relaxation", ICCAD, 1998.

2. https://solvnet.synopsys.com

1
0

.0
2

6

4
.9

0
5

2
.5

5
3

0
.5

8
9

7
.7

2
4

4
.0

4
1

2
.0

4
1

0
.3

9
D U T 1 D U T 2 D U T 3 D U T 4

T
N

S

(U
N

IT
S

)
VOLTAGE CORNER 1

Pre LogicOpt Post LogicOpt
1

6
.7

8
2

2
4

.7
8

3

5
.1

4
8

2
2

.0
4

9

5
.9

0
2

2
2

.5
1

7

4
.1

7
7

1
7

.0
6

6

D U T 1 D U T 2 D U T 3 D U T 4

T
N

S
 (

U
N

IT
S

)

VOLTAGE CORNER 2

Pre LogicOpt Post LogicOpt

https://solvnet.synopsys.com/

