
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Novel Infrastructure Design for multi-FPGA

Prototyping system

Vandana Singh

Intel Corporation

Banagalore, India

Ranjith Kulai

Intel Corporation

Banagalore, India

Vani V

Intel Corporation

Bangalore, India

Gregory Matthew James

Intel Corporation

Bangalore,India

Abstract—in a multi-FPGA based prototyping, a SoC is

partitioned in multiple modules. Each FPGA contains a

partitioned module in addition to FPGA specific infrastructure

components. The functions of these components are to generate

clocks, to multiplex interconnect signals and to interface with

peripheral components. The handling of a multi FPGA system in

the engineering process is challenging task. It requires

comprehensive knowledge of system architecture, specification of

FPGA device used and hardware definition languages. In this

paper, we propose a ‘plug and play’ framework which aids in

seamless stitching of partitioned module with FPGA

infrastructure. FPGA has limited resources for logic

implementation and routing. These infrastructure components

are the overhead to the desired partitioned module

implementation in an FPGA. This paper discusses a novel

infrastructure design which is scalable, robust and reduces

turnaround time. Additionally, this paper also presents a scheme

for pin aware placement TDM components that can address

routing congestion.

Keywords— prototyping; multi-FPGA; multiplexing; Timing

closure; pin placement; partitioning

I. INTRODUCTION

There are three verification methods in design cycle:
Logic Simulation, Emulation and FPGA (Field
Programmable Gate Array) prototyping. Logic simulation,
although providing the best visibility and debugging
capabilities, is extremely time consuming and often
unreliable. It is best suited for small blocks. Emulation offers
reduced run-time than logic simulation. It has quick turn-
around times and good control and high visibility. The
availability of emulator machine per user is limited since it is
shared across several projects. The high cost limits number
of emulator machines. Emulator is good option for critical
code debug but expensive for software development. The
multi-FPGA-based prototyping is cheaper in cost, but lacks
in control and visibility [1]. It also has much longer turn-
around times. A robust ‘plug and play’ FPGA infrastructure
for prototyping can significantly reduce the turnaround time.

The SoCs are getting more complex: multiple cores, big
memories, huge IP blocks, as well as numerous gated clocks.
The mapping of a complex SoC into prototyping platform
requires weeks or sometimes even months. The SoC sub-
systems are developed incrementally in phase by
geographically diverse teams. Also, the expectation is to get
"right-first-time" chip with no re-spins. Therefore, the
objective of prototyping is to build an FPGA platform,
containing a mature SoC design (ideally tape-out version)
attractive for the software development teams, much earlier
than first silicon tape-out. The shrinking project time frames

pose real challenge for prototyping. The only way to meet
the two contrary requirements of time is to have an
extremely fast FPGA mapping flow [2].

There are two choices for prototyping. Firstly, to build
customized multimillion-gate prototype using off-the-shelf
FPGAs. Secondly, to buy or rent predesigned prototyping
systems. We are using an in-house, custom developed multi-
FPGA platform for prototyping the large SoC or Cluster of
IPs. This paper is issued from the experience of prototyping
latest highly complex Intel SoCs.

II. PROTOTYPING PROCESS AND PLATFORM

A. Steps of prototyping

The sequence of steps is shown in fig. 1.

1) The first step of prototyping is partitioning of SoC

design into multiple FPGAs [3]. Sometimes, a sub block of

an SoC can be larger than an FPGA in which case it further

splits into smaller modules. Conversely, one FPGA can

accommodate multiple SoC sub blocks also. Finally, based

on the logic resources available and number of interconnect

signals, each FPGA gets one paritioned module.

2) The partitioning of design creates thousands of

interconnect signals between FPGAs. Although, inter-FPGA

routes are in order of hundreds, the routes etched on the

board are limited. Hence, interconnect signals are time

division multiplexed and then sent over FPGA route [4].

Fig. 1. Steps of prototyping

Fig. 2. Multi-slot chassis

The number of interconnect signals that can be reliably

multiplexed by one route is called Multiplex Ratio. The

details about inter FPGA routes and their multiplexing ratios

constitute ‘TDM information’. Based on TDM information,

each interconnect signal is allocated one time slot in one

assigned route. Each route is associated with two IO pins,

one on sending and other on receiving FPGA [5]. The IO

links used for TDM are both general purpose IO pins and

High Speed Serial Interface (HSSI) channels. The output of

second step is a vast database of TDMed modules with

FPGA IOs assignement.

3) In third step, the TDMed module is converted to

FPGA top rtl. The module is plugged into an FPGA

infrastructure. Henceforth, infrasturcture will be referred as

infra. The infra provides clock, connection to TDM

components and interface to other peripherals. This step is

discussed further in sub section C of section II.

4) In the fourth step, the FPGA RTL top files are

synthesized into bitstreams. The Static timing Analysis

(STA) for each FPGA build is cleaned before the board

testing.

B. Multi Slot Platform

The in-house prototyping system is a multi-FPGA, multi
slot chassis as shown in figure 2. It is built on an industry
standard Advanced TCA chassis. It has a custom backplane
with fixed routes for signals and clock. A PCIe based host
card provides the interface to user for configuration, control
and status monitoring. A PCIe network provides connectivity
to all FPGAs in the chassis.

One slot supports one blade/board. The words blade and
board are used interchangeably. Stratix10 devices and
different peripheral devices are placed on each blade.
Peripheral module includes DDR4 memory, SPI Flash,
SGMII PHY etc. The FPGAs are connected by traces etched
on the board and over backplane. Additionally, there are
flexible cables which are connected via mini-SAS. Thus, we
have highly connected multi-FPGA platform.

C. FPGA Top RTL Design Process

While the SoCs are clocked by specialized clock circuitry
that includes a PLL. A partitioned design spanning multiple

FPGAs has to be clocked locally. From the original design,
the clocking circuitry is removed and replaced with much
slower frequency clocks in all the partitions. Upon power up,
all these are synchronized before SoC reset is de-asserted. A
clock synchronization scheme is employed to make sure that
clocks in all the partitioned modules are edge aligned within
acceptable skew limits. Thus, the partitioned modules
virtually gets the clock edge at the same time in all FPGAs.
If the SoC has Memory Interfaces, then the PHY layer is
replaced by FPGA’s DDR PHY. Similar is the case with
Ethernet, SPI flash, UART, JTAG interfaces etc.
Additionally, there are some custom designed debug
components to capture the partitioned module’s signals and
present data to the user.

The clocking scheme, various peripheral interfaces, TDM
modules and debug components are part of infra [6]. As
shown in figure 3, the infra envelops the partitioned module
and completes a FPGA top RTL. The RTL is generated by
Industry standard packaging and integration tools.

III. NOVEL DESIGN METHODOLOGY

A. Infra Design

Infra design is portable, configurable and highly flexible.

Based on the TDM database generated in Step 2 of

prototyping and user specified configuration, a network of

components is added to partitioned module in plug-and-play

fashion. As shown is figure 4, all the three FPGAs have

different infra. Clock module and infra access node is

common to all. FPGA 1B is least congested. FPGA 1C is

highly congested.

During the testing on board, there is an Infra-health

check done before reset to SoC partitions is lifted. First and

foremost, it is checked whether FPGA PLLs are locked, and

clocks are synchronized across FPGAs. In the TDM

modules, there could be data corruption due to poor signal

integrity on the board. Also, there could be misalignment in

TDM data frame. Each infra component has a “Control and

Status Register” space, which monitors and controls its

behavior during health check.

Fig. 3. Infra components of FPGA top RTL

Fig. 6. Infra ring structure

Fig. 5. Infra components connected in ring fashion

B. Infra-Ring

1) Structure and Protocol
The communication from the host PCIe card to each

CSR space of infra component is performed via Infra access
node. Within an FPGA, communication bus of infra
component is connected to PCIe host via Infra access node.
There are two topologies for this connection- Star and Ring.
As shown in figure 5, star topology offers minimum latency
at the cost of dedicated communication bus for each
component. Ring topology offers communication pathway
(bus) at the cost of high latency.

Typically, there are 200-300 infra components to
connect. These components are connected in ring topology
because it offers better routing implementation and high
latency is acceptable during infra health check. As shown in
figure 6, Avalon Memory-mapped (AVMM) interface is
converted to Avalon Streaming interface (AVST) in infra
access node. AVST ports are connected to each component

to form a ring [8].

2) Addition in FPGA top RTL

The infra components are assigned with a unique

sequential channel id number, Cn based on the order in

which they are logged in “TDMed module database”. These

modules are then connected in order of channel id number.

C. Pin Aware placement

1) STA closure
The place and route of large partitioned module with

huge interconnections is an exhausting task for machine and
repetitive for user if fitter tool fails. There is an increasingly
serious timing closure problem when using high-
performance, high-complexity FPGAs implemented at the 14
nm technology node [9]. A multiplex ratio of 2000 on a
HSSI channel is difficult to route because of routing
congestion as well as hard to close STA timing.

2) FPGA pin Lock

The IO pins in FPGA have fixed location marked by banks

and tiles. Thus, the placement of TDM component is always

close to IO pin. The AVST-ring bus gets routed in crisscross

manner with overlapping routing, as shown in figure 7. If

the AVST ring is routed in non-overlapping manner it could

free up the routing resource for partition interconnect

signals.

3) Implementation

A non-overlapping AVST can be generated by

manipulating the channel id number. Firstly, spatial

coordinates of the FPGA pin associated with each infra

block is identified [10]. A directed graph from infra access

node traversing each “spatial coordinate” is generated such

that there is no overlap with another edge. The channel id

numbers of the components are rearranged according to the

respective node number derived from the directed graph.

Fig. 4. Infra implementation in 3 FPGAs

IV. IMPLEMENTATION RESULTS

The following results shown here are based on the mapping

of an Intel SoC. Table 1 shows a snippet of heavy resource

utilization in one Stratix10 FPGA.

TABLE I. FITTER RESOURCE USAGE SUMMARY

Resource Usage %

 Total LABs:

partially or completely used
92,207 / 93,312 99

 Logic utilization (ALMs needed /

total ALMs on device)
756,656 / 933,120 81

 Total I/O pins 591 / 1,152 51

 Total HSSI channels 19 / 96 20

From the table 1, it is evident that it is possible to TDM
signals on ~50% IOs in an FPGA which has 99% logic
utilization. The results clearly depicts that a well-defined
infra eases the placement and fitting of a resource extensive
design. The number of IO pins and HSSI depends on the
TDM modules instantiated. The LABs and ALMs are
majorly consumed by partitioned module. As shown in
Graph 1, most of the FPGAs are more than 90% utilized.
Graph 2 shows the ability of the infra to TDM interconnect
signals even at high logic utilization.

CONCLUSION AND FUTURE WORK

In this paper, we have discussed prototyping steps for an
in-house prototyping platform. In the prototyping world,
module partitioning, signal TDM and signal routing have
been extensively researched. We have focused on the latter
stage of FPGA top RTL generation. A flexible and robust
infrastructure speeds up stitching of partitioned module with
its components. This integration is done in a “plug and play”

approach. This approach is employed in prototyping multiple
SoC and yielded consistent results.

Graph 1. LABs and corresponding ALMs utilization

Graph 2. Comparison of LABs utilization vs IO pins used

We are motivated to improve the system's set of features.
The foremost is the Graphical User Interface for analyzing
the results. This enhancement will save lots of time in the
development cycle.

ACKNOWLEDGMENT

This work is developed by FPGA Prototyping team in
Intel Corporation. We are very thankful to the whole
technical team for their support and valuable suggestions.

REFERENCES

[1] Brian Bailey, “Do we need a new FPGA structure for prototyping?”,
Designlines, Automotive Designline, EETimes, 2011 [Online]

[2] H. Krupnova, “Mapping multi-million gate SoCs on FPGAs:
industrial methodology and experience”, Proceedings Design,
Automation and Test in Europe Conference and Exhibition, 2004

[3] A Doug, A Lesea, R Richter, "FPGA-based prototyping methodology
manual", Synopsys San Jose, 2011

[4] Zhaoxiang Zong, “Pin Multiplexing Optimization in FPGA
Prototyping System”, 4th International Conference on Systems and
Informatics (ICSAI), 2017

[5] Mariem Turki, Zied Marrakchi, Habib Mehrez, Mohamed Abid,
“Signal multiplexing approach to improve inter-FPGA bandwidth of
prototyping platform”, Springer Science+Business Media New York,
2015

[6] C. Bieser and K.D. Mueller-Glaser. “Rapid Prototyping Design
Acceleration Using a Novel Merging Methodology for Partial
Configuration Streams of Xilinx Virtex-II FPGAs”, In 17th IEEE Int.
Workshop on Rapid System Prototyping, pages 193-199, Los
Alamitos, CA, USA, 2006.

[7] M. Saldana, L. Shannon, and P. Chow, “The ˜ routability of
multiprocessor network topologies in fpgas,” in Proceedings of the
2006 international workshop on System-level interconnect prediction.
ACM, 2006,

[8] Intel corporation, Avalon Interface Specifications, Available:
https://www.intel.com.

[9] Angela Sutton and Jeff Garrison, “How to achieve timing-closure in
high-end FPGAs”, Designlines, Programmable Logic, EETimes,
[Online]

[10] Pritha Banerjee, “FAST I/O PAD PLACEMENT IN FPGAs”, Indian
statistical institute, https://www.isical.ac.in/

Fig. 7. AVST ring overlapping

