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Abstract— Machine vision using CNN is a key application in 

Industrial automation environment, enabling real time as well 

as offline analytics. A lot of processing is required in real time, 

and in high speed environment variable latency of data transfer 

makes a cloud solution unreliable. There is a need for 

application specific hardware acceleration to process CNNs and 

traditional computer vision algorithms. Cost and time-to-

market are critical factors in the fast moving Industrial 

automation segment which makes RTL based custom hardware 

accelerators infeasible. This work proposes a low-cost, scalable, 

compute-at-the-edge solution using FPGA.  
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I. INTRODUCTION  

Computer vision and machine learning enable industrial 
environments to become more intelligent and enable more 
analytics in real time. The industrial environment is very fast 
moving, and the large number of cameras deployed generate 
a huge amount of data to be processed. This data enables 
online as well as offline analytics. Factors such as variable 
latency of data transfer and data privacy make a cloud solution 
for such analytics unfavorable. The high speed industrial 
environment thus calls for application-specific compute-at-
the-edge hardware accelerators to process the sensor data 
using, for example, computer vision algorithms.  

A custom hardware accelerator has challenges of its own, 
including cost of the hardware, as well as time-to-market for 
the acceleration solution [1][2]. Field Programmable Gate 
Arrays (FPGAs) have proven to be reliable accelerators for 
rapidly changing industries. OpenCL, which is an open source 
high level synthesis (HLS) framework has further helped in 
reducing the time-to-market of FPGA solutions for target 
acceleration.  

This paper addresses the critical factors mentioned above 
for acceleration of Computer Vision based applications, 
especially for industrial environments. In this paper, we 
propose a solution methodology for hardware acceleration of 
Convolutional Neural Networks (CNNs) based on a 
combination of a Cyclone V FPGA and an Intel Atom 
Processor. This methodology can be also implemented to 
accelerate traditional Computer Vision algorithms. 

 

Convolutional neural networks are a class of machine learning 
algorithms which work on multiple layers of image 
convolutions. This can be thought of as a cascade of feature 
maps from low level features, e.g directional edges, colors, to 
higher level features, e.g complex curvatures or partial regions 
of objects. There can various types of layers used in CNN, in 
this work we deal with the following: 

 Convolutional layers – An NxN convolution mask that 
operates on the images from the input or the previous 
layer. Each layer has many such feature masks. 

 Pooling Layers – These are used to reduce the dimension 
of the images by selecting the max or average over a fixed 
region. 

 Fully connected layers – This layers are a linear 
transformation of the input by a matrix multiplication. 

 Activation functions – These add nonlinearity in between 
layers, essential for any deep neural network’s operation. 

CNNs are popular in deep learning based image analytics 
and are our target for acceleration in this paper. 

Field Programmable Gate Arrays (FPGA) are re-
programmable integrated circuits that can replicate hardware 
logic by making connections between arrays of logic gates, 
they also include specialized hardware that are commonly 
used, as well as Block RAMs (BRAM) which act like system 
memory. Essentially any specialized digital logic can be 
implemented on this to give faster throughput than a general 
purpose processor. Hence they provide a good trade-off 
between in performance, power consumption and cost 
between general purpose processors and application specific 
integrated circuits. This makes them the ideal choice for many 
specialized applications such as in this paper.  

The structure of the rest of the paper is as follows. Section 
II describes related work with FPGA based CNN acceleration, 
Section III explains the problem statement. Section IV gives 
the system overview for the acceleration. Section V and VI 
describe the methodology used to accelerate traditional 
computer vision and deep learning algorithms using OpenCL. 
We present our results and performance analysis in Section 
VII, and summarize our work in section VIII. 

 

*This work was carried out as part of project work at Intel.          



II. RELATED WORK 

There are existing solutions for accelerating computer 
vision algorithms and deep learning networks on FPGA. 
Wang et al.[3] propose PipeCNN, an OpenCL based 
acceleration solution for CNNs that supports multiple FPGAs. 
However their architecture being generic, may not fit all 
applications in an optimal manner. We found this to be the 
case with our network. More about this is explained in 
Sections VII. Intel OpenVINO [4] is a cross platform neural 
network inference library that allows users to accelerate their 
inference on heterogeneous platforms including FPGAs. 
However the library currently supports larger FPGAs. Our 
target platform is a Cyclone V FPGA, which is low cost, low 
power, and is best suited for our application.  

Chen et al.[5] propose the roofline method, a widely used 
analytical method to check the memory bandwidth and 
compute resources needed on a FPGA particularly for CNN 
architectures. Meloni et al.[6] go beyond the roofline limit to 
make maximal usage of the FPGA and CPU combination. Our 
method is reminiscent of this, as we shall see with our fully 
pipelined method described in Section IV. Bing et al.[7] 
propose an alternate method to reduce the computational load 
by implementing depthwise separable convolutions. 

III. PROBLEM STATEMENT 

The target environment is an industrial setup having labels 
with printed text moving on a high speed conveyor belt 
equipped with an overhead camera. The objective is to run real 
time computer vision algorithms supporting high camera 
frame-rate. The specific use case in this paper is running 
Optical Character Recognition on the labels. The solution 
should meet the following criteria: 

 Complete self-sufficiency of the solution 

 Low cost solution for compute-on-edge industrial solution 

 Maximal usage of CPU and FPGA at all times  

 Reusable architecture for traditional Computer Vision 

operations as well as CNNs 

 Reduced engineering efforts and faster time to market by 

using OpenCL 

 RTL level maximal efficiency and performance extracted 

from OpenCL implementation 

IV. SYSTEM OVERVIEW 

The target use case is a Machine Vision application to 
recognize printed labels on a fast-moving conveyor belt and 
uses CNN to carry out Optical Character Recognition as in 
Fig. 1. 

 

A. Hardware Setup 

  
 

Fig. 1 Industrial Setup for fast OCR 

The Apollo Island platform consists of Apollo Lake which 
is a Dual Core Intel Atom processor, a Cyclone V FPGA 
connected to the processor by a PCIe link, and a DDR3 
memory. A 5 Megapixel CMOS camera is connected to the 
FPGA via LVDS interface. The conveyer belt is mounted with 
an Apollo Island based camera (consisting of  Intel Atom and 
Cyclone V FPGA connected to a 5MP CMOS camera) to read 
and process printed labels. 

B. CNN based Algorithm 

Convolutional Neural Networks (CNN) are a class of 
machine learning algorithms which have recently performed 
very well in image classification and are very widely used for 
machine vision. In OCR, the input is an image and the output 
is a choice among a set of characters that are to be recognized. 

 

Fig. 2 CNN topology for OCR 

Fig. 2 shows the topology for the network to perform OCR 
in this work. The network topology consists of two 
convolution and pooling layers followed by two fully 
connected layers, with mask size 3x3 for convolutions. The 
classification in the final layer in the CNN network gives the 
character being recognized. The character obtained from all 
segmented images are then arranged together to result in the 
text in the image. 

The stages of the algorithm are as in Fig. 3. The camera on 
board the Apollo Island takes the overhead image of the label, 
the FPGA then preprocesses the image and passes it to the 
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Fig. 3 Pipeline for OCR Accleration 



 CPU, where connected component labelling is used to get 
image regions with individual characters, which are then 
recognized by the CNN on the FPGA, and finally the post-
processing is done on the CPU to give the text output.   

The FPGA pre-processes the raw image data from the 
sensor. The CMOS camera sensor provides raw bayer image 
data. The FPGA implements debayering logic to convert the 
raw image to RGB format. The image is then processed by 
RGB2Grayscale block to generate gray scale image which is 
passed to the CPU.  

The candidate regions containing characters are generated 
by the Connected Component Labeling (CCL) block which is 
used to detect connected regions in binary images. The 
grayscale image is thresholded and CCL localizes and extract 
candidate character regions in the image. These candidate 
regions are then passed to the CNN sequentially.  

C. Computation Analysis 

As seen in the compute calculation in Table IV-1, the 
convolution operations are most compute intensive in CNN. 
In this paper we present an OpenCL based solution to 
accelerate CNN by creating custom hardware architecture to 
compute the convolution operations. The implementation is 
modular and scalable, and can be modified to suit any CNN 
topology. 

TABLE I. CNN PER LAYER COMPUTE 

Layer Nodes Input Size Compute 

Convolution Layer 1 16 16x16 36864 

Pooling Layer 1 16 16x16 4096 

Convolution Layer 2 64 8x8x16 589824 

Pooling Layer 2 64 8x8x16 65536 

Fully Connected 
Layer 1 

128 4x4x64 131072 

Fully Connected 
Layer 2 

256 128 32768 

 

The solution uses the dual core CPU and FPGA in a fully 
pipelined manner. The CPU uses two threads, one to compute 
the CCL, which takes the maximum amount of time, and 
another thread to post-process the CNN outputs and fetch new 
images from the FPGA. The CNN computation offload on 
FPGA runs parallel to these software threads. This pipelined 
implementation is explained in SECTION V. This architecture 
ensures extraction of maximum resource utilization on Apollo 
Island platform 

V. RASTER SCAN ARCHITECTURE FOR COMPUTER VISION 

ACCELERATION 

Convolution operations, and other spatial domain filtering, 
require non-contiguous memory accesses, which uses high 
memory bandwidth. Traditional computer vision operations 
such as sobel, erosion, dilation share similar memory access 
characteristics with convolutional operation. The operations 
generally consist of convoluting or multiplying a mask/filter 
with a sub-region of an image called a sliding window. The 
sliding window keeps moving, allowing the operation to be 
replicated across the image. 

The proposed hardware architecture reads and processes 
an image in raster scan order. Processing image slices as a 1D 
data stream enables bypassing the memory fetch overhead. By 
using shift registers to store a maximum of N-1 rows and N 
pixels at a time, where N is the size of the convolution. The 
nodes are connected in a pipelined fashion so that each node 
receives an input pixel and generates an output pixel every 
clock cycle.  

This architecture is scalable to the size of the filter being 
utilized as well as stride, and can be utilized to accelerate both 
traditional as well as deep learning based computer vision.  

 

Figure 4 Raster Scan Architecture 

To further improve the performance, we leverage a special 
feature of Altera FPGAs allows the use of M10k block rams 
as shift registers. This dramatically enhances the resource 
usage in this architecture. In the Apollo Island platform, the 
sensor is directly connected to the FPGA, hence this 
architecture allows processing before the sensor even outputs 
the entire image, which demonstrates maximal efficiency of 
this architecture. 

The input image size for Layer 1 in the CNN network for 
OCR is 16x16, and convolution kernel size is 3x3. The 
convolution kernel thus needs to buffer 2 rows of image data 
and 3 extra pixels and start processing the convolution. The 
raster scan architecture ensures that one pixel is processed 
every clock cycle. 

VI. CNN ACCELERATOR HARDWARE ARCHITECTURE 

Fig. 5 shows the hardware architecture for accelerating the 
convolution layers of the CNN network. The input image, as 
well as the intermediate outputs, are accessed in a raster scan 
order, as described in section 3.1. The convolution nodes of 
the CNN topology in depicted in Fig. 4 are implemented on 
the FPGA. They receive image slices with characters and 
process them across multiple layers and send the result to the 
CPU to compute the fully connected layers and perform the 
post processing for OCR.  
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 Figure 5 High Level Hardware Architecture for CNN Acceleration 

 

 The convolution operation is a dot product of two vectors. 
OpenCL naively uses more DSPs than required for the 
multiplication operation, hence a small custom RTL 



block is instantiated to optimize the DSP usage. The 
pooling operation is an averaging of 2x2 image slices. 

 Owing to limited resources available on the FPGA, the 

physical nodes are distributed among Layer 1 and Layer 

2 to balance the computational load between the layers. A 

weight buffer, for storing all the network’s weights, is 

used to reduce the CPU DDR overhead of loading many 

weights every cycle. A unique methodology is introduced 

to compute partial results of the Layer 2 convolutions, as 

all outputs from Layer 1 are not available to Layer 2 at 

the same time. The non-linear activation function is the 

ReLU operation. 
 

A. Compute Balancing and Partials Computation 

The CNN accelerator leverages a key compute balancing 
strategy to maximize the active usage of hardware resources. 
The number of nodes for different layers of CNN that are 
physically instantiated in hardware is determined by the 
number of computes as in Table 1 as well as available 
resources on FPGA. The nodes of a layer get processed 
iteratively by the instantiated physical nodes, or kernels. Two 
layers are connected together by a FIFO which stores the data 
generated by the previous layer and is accessed iteratively by 
the nodes of the subsequent layer. The raster scan order is 
maintained in the FIFO across the different outputs, or feature 
maps, from the nodes of the previous layer. 

 

A compute balanced hardware consuming maximum 
DSPs and that is active without being idle in any clock cycle 
is achieved by a unique Partials Computation methodology. 
All nodes in one layer need to generate output feature maps 
for the next layer to start processing. This creates stalls and 
affects the performance of the FPGA. To address this issue, an 
architectural scheme is presented that enables a layer to start 
processing with minimal data from the previous layer by 
computing partials. This modification has been critical in 
maximizing the resource activity on the FPGA and 
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 Figure 6 High Level Partial Compute Block 

 
The computations of Layer 2 require outputs from all 

nodes of Layer 1. We alleviate this problem by using the fact 
that the output of Layer 2 can be computed as the sum of 
convolutions over each individual node of Layer 1. We call 
the results of these individual convolutions as the partials of 
Layer 2, these are stored in the Partials Buffer, which is a 
circular shift register. As the outputs from Layer 1 are 
computed, the partials are updated as shown in Fig. 7, until all 
the nodes are completed. This unique architecture allows 

continuous convolutions without any stalls and allows the 
hardware to operate with maximum performance. 

B. Weights Buffering on FPGA 

CNN is a high bandwidth application which operates on 
huge amount of data as weights, inputs and intermediate as 
well as final outputs. Weights of the neural network, 
especially for Layer 2, need to be continuously updated as the 
convolutional kernels iterate many times over all the nodes. 
This creates a bottleneck in the memory bandwidth and slows 
down the input image streaming pipeline from the CPU. 
Hence, all the weights of the network are stored on board the 
FPGA in M10k blocks. This frees up the input and output 
streams and also saves CPU overhead of indexing different 
weight fetch requests. 

VII. RESULTS AND PERFORMANCE ANALYSIS 

The CNN accelerator presented in this work has been 
developed using OpenCL and has been optimized to meet 
RTL level performance. The resource area usage is as in Table 
II. The different blocks present on the FPGA that we report 
the numbers are: 

ALMS - Adaptive Logic Modules – These are essentially 
general purpose digital logic modules. 

DSPs – Digital Signal Processors – These have optimized 
hardware for Floating point operations. 

M10k – The atomic unit of system memory on the FPGA, 
equal to 10 kB of memory.  

TABLE II. RESOURCE UTILIZATION ON CYCLONE V FPGA 

Resource Percentage Used 

ALM 88 

DSP 76 

M10K 44 

 
We had tested the resource usage of PipeCNN on our 
optimized architecture, however it was unable to fit in the 
FPGA and ALM usage reported by the fitter was 116%. It also 
used 5 DSP cores per 3x3 convolutional kernel whereas our 
implementation uses only 4 without any loss of accuracy. 

Table III provides profiling data for the software as well 
as for the hardware accelerated flow for OCR. The Cyclone V 
hardware operates on a frequency of 132MHz, and the end to 
end application processes 220 characters in 33ms. 

TABLE III. PROFILING DATA FOR SOFTWARE AND HARDWARE 

ACCELERATED FLOWS FOR OCR 

Threaded Operations CPU (ms) FPGA (ms) 

IO Channel (FPGA) - 8.3 

CCL+ Threshold 25 - 

CNN-Conv (FPGA) 200 8 

CNN - FC 15 - 

 

The hardware achieves 25x performance over convolution 
layers. The software flow could originally compute OCR at 4 
FPS and the CNN accelerator boosts the end-to-end 
performance by 7.5X by running at 30FPS. 



The state of the art OCR implementations recognize 20 
words in 350ms and 100 words in 500ms. Taking that average 
number of characters in a word is 4.84, the time to recognize 
a single character takes at least 1.033ms. The implemented 
architecture on the other hand takes 0.15ms to recognize a 
character and demonstrates 6.8x better performance. 

The impact of automation is immense and deeply affects 
all kind of industries. Modern industry is extremely cost 
sensitive and looking for low cost solutions without 
compromising on speed of processing. Fast TTM and 
flexibility to change or fine tune requirements is very critical. 

VIII.  SUMMARY 

This work presents a unique architecture to accelerate 
Convolutional Neural Networks and spatial domain computer 
vision operations in general. This was implemented using 
OpenCL on Intel Apollo Island Platform, which is a low cost 
FPGA solution. OCR is an effective way decode a specific 
part number, date of manufacturing, date of expiry etc. in a 
fast moving conveyor belt and is a key machine vision 
application in industrial environment.  
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