
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Edge Acceleration of Computer Vision and Deep

Learning Algorithms using OpenCL

Bakshree Mishra

Intel Corporation

Bangalore, India
bakshree.mishra@intel.com

Dipam Chakraborty

Intel Corporation

Bangalore, India

dipam.chakraborty@intel.com

Srajudheen Makkadayil

Intel Corporation

Bangalore, India

srajudheen.makkadayil@intel.com

Saurabh D. Patil

Intel Corporation

Bangalore, India
saurabhdpatil@gmail.com

Bhaskar Nallani

Intel Corporation*

Bangalore, India
bhaskar_nallani@yahoo.com

Abstract— Machine vision using CNN is a key application in

Industrial automation environment, enabling real time as well

as offline analytics. A lot of processing is required in real time,

and in high speed environment variable latency of data transfer

makes a cloud solution unreliable. There is a need for

application specific hardware acceleration to process CNNs and

traditional computer vision algorithms. Cost and time-to-

market are critical factors in the fast moving Industrial

automation segment which makes RTL based custom hardware

accelerators infeasible. This work proposes a low-cost, scalable,

compute-at-the-edge solution using FPGA.

Keywords—CNN, OpenCL, Computer Vision, Machine

Learning, Industrial Automation, FPGA, OCR, Hardware

Acceleration

I. INTRODUCTION

Computer vision and machine learning enable industrial
environments to become more intelligent and enable more
analytics in real time. The industrial environment is very fast
moving, and the large number of cameras deployed generate
a huge amount of data to be processed. This data enables
online as well as offline analytics. Factors such as variable
latency of data transfer and data privacy make a cloud solution
for such analytics unfavorable. The high speed industrial
environment thus calls for application-specific compute-at-
the-edge hardware accelerators to process the sensor data
using, for example, computer vision algorithms.

A custom hardware accelerator has challenges of its own,
including cost of the hardware, as well as time-to-market for
the acceleration solution [1][2]. Field Programmable Gate
Arrays (FPGAs) have proven to be reliable accelerators for
rapidly changing industries. OpenCL, which is an open source
high level synthesis (HLS) framework has further helped in
reducing the time-to-market of FPGA solutions for target
acceleration.

This paper addresses the critical factors mentioned above
for acceleration of Computer Vision based applications,
especially for industrial environments. In this paper, we
propose a solution methodology for hardware acceleration of
Convolutional Neural Networks (CNNs) based on a
combination of a Cyclone V FPGA and an Intel Atom
Processor. This methodology can be also implemented to
accelerate traditional Computer Vision algorithms.

Convolutional neural networks are a class of machine learning
algorithms which work on multiple layers of image
convolutions. This can be thought of as a cascade of feature
maps from low level features, e.g directional edges, colors, to
higher level features, e.g complex curvatures or partial regions
of objects. There can various types of layers used in CNN, in
this work we deal with the following:

 Convolutional layers – An NxN convolution mask that
operates on the images from the input or the previous
layer. Each layer has many such feature masks.

 Pooling Layers – These are used to reduce the dimension
of the images by selecting the max or average over a fixed
region.

 Fully connected layers – This layers are a linear
transformation of the input by a matrix multiplication.

 Activation functions – These add nonlinearity in between
layers, essential for any deep neural network’s operation.

CNNs are popular in deep learning based image analytics
and are our target for acceleration in this paper.

Field Programmable Gate Arrays (FPGA) are re-
programmable integrated circuits that can replicate hardware
logic by making connections between arrays of logic gates,
they also include specialized hardware that are commonly
used, as well as Block RAMs (BRAM) which act like system
memory. Essentially any specialized digital logic can be
implemented on this to give faster throughput than a general
purpose processor. Hence they provide a good trade-off
between in performance, power consumption and cost
between general purpose processors and application specific
integrated circuits. This makes them the ideal choice for many
specialized applications such as in this paper.

The structure of the rest of the paper is as follows. Section
II describes related work with FPGA based CNN acceleration,
Section III explains the problem statement. Section IV gives
the system overview for the acceleration. Section V and VI
describe the methodology used to accelerate traditional
computer vision and deep learning algorithms using OpenCL.
We present our results and performance analysis in Section
VII, and summarize our work in section VIII.

*This work was carried out as part of project work at Intel.

II. RELATED WORK

There are existing solutions for accelerating computer
vision algorithms and deep learning networks on FPGA.
Wang et al.[3] propose PipeCNN, an OpenCL based
acceleration solution for CNNs that supports multiple FPGAs.
However their architecture being generic, may not fit all
applications in an optimal manner. We found this to be the
case with our network. More about this is explained in
Sections VII. Intel OpenVINO [4] is a cross platform neural
network inference library that allows users to accelerate their
inference on heterogeneous platforms including FPGAs.
However the library currently supports larger FPGAs. Our
target platform is a Cyclone V FPGA, which is low cost, low
power, and is best suited for our application.

Chen et al.[5] propose the roofline method, a widely used
analytical method to check the memory bandwidth and
compute resources needed on a FPGA particularly for CNN
architectures. Meloni et al.[6] go beyond the roofline limit to
make maximal usage of the FPGA and CPU combination. Our
method is reminiscent of this, as we shall see with our fully
pipelined method described in Section IV. Bing et al.[7]
propose an alternate method to reduce the computational load
by implementing depthwise separable convolutions.

III. PROBLEM STATEMENT

The target environment is an industrial setup having labels
with printed text moving on a high speed conveyor belt
equipped with an overhead camera. The objective is to run real
time computer vision algorithms supporting high camera
frame-rate. The specific use case in this paper is running
Optical Character Recognition on the labels. The solution
should meet the following criteria:

 Complete self-sufficiency of the solution

 Low cost solution for compute-on-edge industrial solution

 Maximal usage of CPU and FPGA at all times

 Reusable architecture for traditional Computer Vision

operations as well as CNNs

 Reduced engineering efforts and faster time to market by

using OpenCL

 RTL level maximal efficiency and performance extracted

from OpenCL implementation

IV. SYSTEM OVERVIEW

The target use case is a Machine Vision application to
recognize printed labels on a fast-moving conveyor belt and
uses CNN to carry out Optical Character Recognition as in
Fig. 1.

A. Hardware Setup

Fig. 1 Industrial Setup for fast OCR

The Apollo Island platform consists of Apollo Lake which
is a Dual Core Intel Atom processor, a Cyclone V FPGA
connected to the processor by a PCIe link, and a DDR3
memory. A 5 Megapixel CMOS camera is connected to the
FPGA via LVDS interface. The conveyer belt is mounted with
an Apollo Island based camera (consisting of Intel Atom and
Cyclone V FPGA connected to a 5MP CMOS camera) to read
and process printed labels.

B. CNN based Algorithm

Convolutional Neural Networks (CNN) are a class of
machine learning algorithms which have recently performed
very well in image classification and are very widely used for
machine vision. In OCR, the input is an image and the output
is a choice among a set of characters that are to be recognized.

Fig. 2 CNN topology for OCR

Fig. 2 shows the topology for the network to perform OCR
in this work. The network topology consists of two
convolution and pooling layers followed by two fully
connected layers, with mask size 3x3 for convolutions. The
classification in the final layer in the CNN network gives the
character being recognized. The character obtained from all
segmented images are then arranged together to result in the
text in the image.

The stages of the algorithm are as in Fig. 3. The camera on
board the Apollo Island takes the overhead image of the label,
the FPGA then preprocesses the image and passes it to the

SENSOR

D
EB

A
YE

R

R
G

B2
G

R
EY

THRESHOLD CCL
CNN on

SLICE

HARDWARE
(FPGA)

SOFTWARE (CPU)

FC
OCR

DECODE

SOFTWARE (CPU)HARDWARE (FPGA)

IMAGE
PRE-PROCESSING

CHARACTER
CANDIDATE REGIONS

CHARACTER
CLASSIFICATION

Fig. 3 Pipeline for OCR Accleration

 CPU, where connected component labelling is used to get
image regions with individual characters, which are then
recognized by the CNN on the FPGA, and finally the post-
processing is done on the CPU to give the text output.

The FPGA pre-processes the raw image data from the
sensor. The CMOS camera sensor provides raw bayer image
data. The FPGA implements debayering logic to convert the
raw image to RGB format. The image is then processed by
RGB2Grayscale block to generate gray scale image which is
passed to the CPU.

The candidate regions containing characters are generated
by the Connected Component Labeling (CCL) block which is
used to detect connected regions in binary images. The
grayscale image is thresholded and CCL localizes and extract
candidate character regions in the image. These candidate
regions are then passed to the CNN sequentially.

C. Computation Analysis

As seen in the compute calculation in Table IV-1, the
convolution operations are most compute intensive in CNN.
In this paper we present an OpenCL based solution to
accelerate CNN by creating custom hardware architecture to
compute the convolution operations. The implementation is
modular and scalable, and can be modified to suit any CNN
topology.

TABLE I. CNN PER LAYER COMPUTE

Layer Nodes Input Size Compute

Convolution Layer 1 16 16x16 36864

Pooling Layer 1 16 16x16 4096

Convolution Layer 2 64 8x8x16 589824

Pooling Layer 2 64 8x8x16 65536

Fully Connected
Layer 1

128 4x4x64 131072

Fully Connected
Layer 2

256 128 32768

The solution uses the dual core CPU and FPGA in a fully
pipelined manner. The CPU uses two threads, one to compute
the CCL, which takes the maximum amount of time, and
another thread to post-process the CNN outputs and fetch new
images from the FPGA. The CNN computation offload on
FPGA runs parallel to these software threads. This pipelined
implementation is explained in SECTION V. This architecture
ensures extraction of maximum resource utilization on Apollo
Island platform

V. RASTER SCAN ARCHITECTURE FOR COMPUTER VISION

ACCELERATION

Convolution operations, and other spatial domain filtering,
require non-contiguous memory accesses, which uses high
memory bandwidth. Traditional computer vision operations
such as sobel, erosion, dilation share similar memory access
characteristics with convolutional operation. The operations
generally consist of convoluting or multiplying a mask/filter
with a sub-region of an image called a sliding window. The
sliding window keeps moving, allowing the operation to be
replicated across the image.

The proposed hardware architecture reads and processes
an image in raster scan order. Processing image slices as a 1D
data stream enables bypassing the memory fetch overhead. By
using shift registers to store a maximum of N-1 rows and N
pixels at a time, where N is the size of the convolution. The
nodes are connected in a pipelined fashion so that each node
receives an input pixel and generates an output pixel every
clock cycle.

This architecture is scalable to the size of the filter being
utilized as well as stride, and can be utilized to accelerate both
traditional as well as deep learning based computer vision.

Figure 4 Raster Scan Architecture

To further improve the performance, we leverage a special
feature of Altera FPGAs allows the use of M10k block rams
as shift registers. This dramatically enhances the resource
usage in this architecture. In the Apollo Island platform, the
sensor is directly connected to the FPGA, hence this
architecture allows processing before the sensor even outputs
the entire image, which demonstrates maximal efficiency of
this architecture.

The input image size for Layer 1 in the CNN network for
OCR is 16x16, and convolution kernel size is 3x3. The
convolution kernel thus needs to buffer 2 rows of image data
and 3 extra pixels and start processing the convolution. The
raster scan architecture ensures that one pixel is processed
every clock cycle.

VI. CNN ACCELERATOR HARDWARE ARCHITECTURE

Fig. 5 shows the hardware architecture for accelerating the
convolution layers of the CNN network. The input image, as
well as the intermediate outputs, are accessed in a raster scan
order, as described in section 3.1. The convolution nodes of
the CNN topology in depicted in Fig. 4 are implemented on
the FPGA. They receive image slices with characters and
process them across multiple layers and send the result to the
CPU to compute the fully connected layers and perform the
post processing for OCR.

Layer 1 Compute wrapper
L1 physical nodes

Input Image
Stream

Convolution

Convolution

Convolution

.

.

.

.

Pool

Pool

Pool

.

.

.

.
Weights Buffer

Host to Device
Interface

Layer 2 Buffer Layer 2 Compute wrapper
L2 physical nodes

Convolution

Convolution

Convolution

.

.

.

.

Pool

Pool

Pool

.

.

.

.

L1 Output
FIFO
and

 L2 Weights

P
A
R
T
I
A
L
S

B
U
F
F
E
R

Add

Add

Add

.

.

.

.

 Figure 5 High Level Hardware Architecture for CNN Acceleration

 The convolution operation is a dot product of two vectors.
OpenCL naively uses more DSPs than required for the
multiplication operation, hence a small custom RTL

block is instantiated to optimize the DSP usage. The
pooling operation is an averaging of 2x2 image slices.

 Owing to limited resources available on the FPGA, the

physical nodes are distributed among Layer 1 and Layer

2 to balance the computational load between the layers. A

weight buffer, for storing all the network’s weights, is

used to reduce the CPU DDR overhead of loading many

weights every cycle. A unique methodology is introduced

to compute partial results of the Layer 2 convolutions, as

all outputs from Layer 1 are not available to Layer 2 at

the same time. The non-linear activation function is the

ReLU operation.

A. Compute Balancing and Partials Computation

The CNN accelerator leverages a key compute balancing
strategy to maximize the active usage of hardware resources.
The number of nodes for different layers of CNN that are
physically instantiated in hardware is determined by the
number of computes as in Table 1 as well as available
resources on FPGA. The nodes of a layer get processed
iteratively by the instantiated physical nodes, or kernels. Two
layers are connected together by a FIFO which stores the data
generated by the previous layer and is accessed iteratively by
the nodes of the subsequent layer. The raster scan order is
maintained in the FIFO across the different outputs, or feature
maps, from the nodes of the previous layer.

A compute balanced hardware consuming maximum
DSPs and that is active without being idle in any clock cycle
is achieved by a unique Partials Computation methodology.
All nodes in one layer need to generate output feature maps
for the next layer to start processing. This creates stalls and
affects the performance of the FPGA. To address this issue, an
architectural scheme is presented that enables a layer to start
processing with minimal data from the previous layer by
computing partials. This modification has been critical in
maximizing the resource activity on the FPGA and

Partials Output
Circular Shift Register

Multiply
Add

Pixel buffer

Weight buffer

Layer n-1 output

Layer n output

 Figure 6 High Level Partial Compute Block

The computations of Layer 2 require outputs from all

nodes of Layer 1. We alleviate this problem by using the fact
that the output of Layer 2 can be computed as the sum of
convolutions over each individual node of Layer 1. We call
the results of these individual convolutions as the partials of
Layer 2, these are stored in the Partials Buffer, which is a
circular shift register. As the outputs from Layer 1 are
computed, the partials are updated as shown in Fig. 7, until all
the nodes are completed. This unique architecture allows

continuous convolutions without any stalls and allows the
hardware to operate with maximum performance.

B. Weights Buffering on FPGA

CNN is a high bandwidth application which operates on
huge amount of data as weights, inputs and intermediate as
well as final outputs. Weights of the neural network,
especially for Layer 2, need to be continuously updated as the
convolutional kernels iterate many times over all the nodes.
This creates a bottleneck in the memory bandwidth and slows
down the input image streaming pipeline from the CPU.
Hence, all the weights of the network are stored on board the
FPGA in M10k blocks. This frees up the input and output
streams and also saves CPU overhead of indexing different
weight fetch requests.

VII. RESULTS AND PERFORMANCE ANALYSIS

The CNN accelerator presented in this work has been
developed using OpenCL and has been optimized to meet
RTL level performance. The resource area usage is as in Table
II. The different blocks present on the FPGA that we report
the numbers are:

ALMS - Adaptive Logic Modules – These are essentially
general purpose digital logic modules.

DSPs – Digital Signal Processors – These have optimized
hardware for Floating point operations.

M10k – The atomic unit of system memory on the FPGA,
equal to 10 kB of memory.

TABLE II. RESOURCE UTILIZATION ON CYCLONE V FPGA

Resource Percentage Used

ALM 88

DSP 76

M10K 44

We had tested the resource usage of PipeCNN on our
optimized architecture, however it was unable to fit in the
FPGA and ALM usage reported by the fitter was 116%. It also
used 5 DSP cores per 3x3 convolutional kernel whereas our
implementation uses only 4 without any loss of accuracy.

Table III provides profiling data for the software as well
as for the hardware accelerated flow for OCR. The Cyclone V
hardware operates on a frequency of 132MHz, and the end to
end application processes 220 characters in 33ms.

TABLE III. PROFILING DATA FOR SOFTWARE AND HARDWARE

ACCELERATED FLOWS FOR OCR

Threaded Operations CPU (ms) FPGA (ms)

IO Channel (FPGA) - 8.3

CCL+ Threshold 25 -

CNN-Conv (FPGA) 200 8

CNN - FC 15 -

The hardware achieves 25x performance over convolution
layers. The software flow could originally compute OCR at 4
FPS and the CNN accelerator boosts the end-to-end
performance by 7.5X by running at 30FPS.

The state of the art OCR implementations recognize 20
words in 350ms and 100 words in 500ms. Taking that average
number of characters in a word is 4.84, the time to recognize
a single character takes at least 1.033ms. The implemented
architecture on the other hand takes 0.15ms to recognize a
character and demonstrates 6.8x better performance.

The impact of automation is immense and deeply affects
all kind of industries. Modern industry is extremely cost
sensitive and looking for low cost solutions without
compromising on speed of processing. Fast TTM and
flexibility to change or fine tune requirements is very critical.

VIII. SUMMARY

This work presents a unique architecture to accelerate
Convolutional Neural Networks and spatial domain computer
vision operations in general. This was implemented using
OpenCL on Intel Apollo Island Platform, which is a low cost
FPGA solution. OCR is an effective way decode a specific
part number, date of manufacturing, date of expiry etc. in a
fast moving conveyor belt and is a key machine vision
application in industrial environment.

ACKNOWLEDGMENT

We would like to thank our colleagues in Intel Bangalore
and Intel Penang who supported this activity.

REFERENCES

[1] Abdelouahab, Kamel, et al. "Accelerating CNN inference on FPGAs:
A Survey." arXiv preprint arXiv:1806.01683 (2018).

[2] Zhao, Wenlai, et al. "F-CNN: An FPGA-based framework for training
convolutional neural networks." 2016 IEEE 27th International
Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE, 2016.

[3] D. Wang, K. Xu and D. Jiang, "PipeCNN: An OpenCL-based open-
source FPGA accelerator for convolution neural networks," 2017
International Conference on Field Programmable Technology
(ICFPT), Melbourne, VIC, 2017, pp. 279-282.

[4] OpenVINO - Open Visual Inference and Neural Network Optimization
Toolkit, Intel Corporation, https://software.intel.com/enus/openvino-
toolkit.

[5] Zhang, Chen, et al. "Optimizing fpga-based accelerator design for deep
convolutional neural networks." Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2015.

[6] Meloni, Paolo, et al. "Curbing the roofline: a scalable and flexible
architecture for CNNs on FPGA." Proceedings of the ACM
International Conference on Computing Frontiers. ACM, 2016.

[7] Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An FPGA-Based
CNN Accelerator Integrating Depthwise Separable Convolution.
Electronics 2019, 8, 281.

