
Cheetah Design System Infrastructure ©2019 IEEE

Cheetah: Innovation of Design System

Infrastructure

Divya Ramarao

Design Infrastructure

Intel India Pvt. Limited

Bangalore, India

divya.ramarao@intel.com

Prateeksha Keshari

Design Infrastructure

Intel India Pvt. Limited

Bangalore, India

prateeksha.keshari@intel.com

Mahesh Deshpande

Design Infrastructure

Intel India Pvt. Limited

Bangalore, India

mahesh.deshpande@intel.com

Susmita Pal

Design Infrastructure

Intel India Pvt. Limited

Bangalore, India
susmita.pal@intel.com

Abstract— As market demands like any other industry, Intel

also strive to bolster product execution models targeted at all

segments of Intel to enable remarkable reduction in base and

derivative product development time. The Cheetah Design

System is one of the initiatives that aimed to improve the

efficiency and productivity of the design execution model and

time to market. This paper discusses an overview of the Cheetah

Design System Infrastructure (aka Backbone Infrastructure)

architecture and the design principles being used to make the

Cheetah Design System as a bare-metal design system that are

important innovations to align with the Intel goal. The paper

also reviews the Backbone Infrastructure components

developed and their seamless integration with different design

workflows from system level to tape-in. The principles adapted

in this design systems are Layered Approach, Flows interaction

through central APIs, Configurability through metadata, one

implementation per functionality, Design workflow and

technology agnostic and Abstraction to allow multiple

implementations

Keywords— Bare-metal, Cheetah Design System

Infrastructure, Backbone Infrastructure, Metadata, Artifacts,

Workarea

I. INTRODUCTION

Intel is emerging into new market segments which are very
dynamic and require quick development cycle. we need to be
competitive enough in order to meet the product’s timeline.
This demands a design system which allows various modular
design processes (e.g. System Level, Virtual Prototyping,
Front End RTL Design, R2G, Analog & Mixed Signal, Chip
Package Board Co-Design, Post Silicon and Firmware) to
integrate to the system easily in order to support a variety of
Intel products (e.g. IP development, SoC design, special
applications, etc.). Besides, another success criteria of a
design system is the scalability of infrastructure e.g. to satisfy
high compute and data demands.

Considering the above facts Cheetah design system shall be
lightweight or more known as “bare-metal” in use of vendor
tools so that we can enjoy benefit directly from all types of
capabilities and new features released with a new tool version.
In addition to that, this design system shall utilize internal and
external process technology where it will give more flexibility
to a business unit to meet custom requirements. It also must
be able to ramp design teams quickly whether it is internal or
external designers on existing and new projects to adapt with
rapid change business environment due to various reasons
such as shifting project priorities, new customers etc.
To enable re-iteration across design steps and traceability of

data paths, a design system needs a cohesive design data
management as well. Re-iteration across all or a subset of
design steps allows an overlap of design work which will
support a shift left of development while traceability is
important to address the market needs.

To achieve all the above success criteria, it’s important to have
a stable and reusable base layer called backbone infrastructure
which is then is common to all tool flows of Cheetah Design
System. Backbone infrastructure has been designed to provide
a flexible and configurable environment which can easily be
adapted to accommodate different project needs. It also allows
a project to construct their configuration to fit their business
execution model, e.g. IP development might require a
consumer oriented setup while SoC design is towards product
centric.

Cheetah Backbone Infrastructure consists of following
components;

1. An Enter Project Scope component to configure and setup
a user environment in which a designer can execute the
workflows and tools;

2. A Work Flow Script component to provide a consistent
work flow anatomy such as populate, prepare, run, release
and archive steps;

3. A Point Tool Executable component to setup a runtime
environment for vendor tools;

4. A Job Management component to submit jobs into the
compute farm;

5. A Project Configuration component to create metadata
(XML based configuration files);

6. A Design Project Management component to support
indicator reporting, milestone closure and signoff;

7. A Design Data Management component to deal with
source management systems;

Please note that Design Data Management and Design Project
Management components are out of scope for this paper.

mailto:divya.ramarao@intel.com
file:///C:/Users/pghooli/Desktop/Projects/WINTECHON/prateeksha.keshari@intel.com
mailto:mahesh.deshpande@intel.com
file:///C:/Users/pghooli/Desktop/Projects/WINTECHON/susmita.pal@intel.com

Cheetah Design System Infrastructure ©2019 IEEE

II. CHEETAH DESIGN SYSTEM INFRASTRUCTURE

An overview of the Cheetah design system’s infrastructure is

provided below.

A. Overview

Figure 1.0: Cheetah Design System Infrastructure connects

environment and flows

Current Intel design systems are highly optimized for specific

products which ultimately increases the complexity to make

changes to the design system. This can negatively impact the

velocity of our execution. Leveraging past learnings, the

Cheetah Design System Infrastructure is designed to be

lightweight and scalable which connects the environment and

flows to the holistic workspace. As a result, we have chosen

a set of principles to follow during architecture design stage.

As shown in Figure 1.0 above, the Cheetah Design System

Infrastructure uses a layered approach with standard generic

interfaces and APIs that are provided by Backbone

Infrastructure software using an object-oriented methodology

to allow for modularity and exchangeability of solutions. The

set of APIs enables support design workflows to have a

consistent access to the underlying IT infrastructure and

design system components such as Design Package, Point-

Tool-Executables (PTE), Configuration, Data Repos, etc.(in

detail will be discussed in section II)

The Backbone Infrastructure is the entry point to a design

project on a UNIX platform and handles all data and

configuration management. The Backbone Infrastructure is

independent of a functional design workflow or technology.

By construction, this principle avoids conflicts among design

workflows. A Design Engineer (DE) on-boards to a design

project through “Enter Project Scope” (EPS) script where it

sets up the workspace, starts a new shell and sets the

minimum required environment based on the project

configuration. After that the DE will be able to start execution

of design workflows.

A design workflow (WFS) uses the backbone and its APIs to

communicate with the infrastructure. It need not implement

any infrastructure aspects such as access configuration items

(configuration management) nor shall it handle command

line arguments, access source control systems, dispatch

compute jobs (Job Management), accessing of technology

libraries or packages (Design Package), and execution of

3rd party tools or in-house tools (Point Tool Execution) or

data handoff between flows and other consumers etc. This

principle allows us to address common issues in a consistent

way as only one functionality exists for one implementation.

The API abstraction layer also enables plug-in and plug-out

of various infrastructure components, e.g., introducing a new

source control methodology (Design Data management) or

operating system such as SUSE LINUX 12. Cheetah uses

metadata stored in an XML format to describe all artifacts

commonly used or shared across design workflows— flows,

collaterals, exchanged files, archives, etc. This metadata is

stored together with the corresponding artifacts. The

Backbone Infrastructure is built using a generic interface

through the “Configuration management” component to

allow a workflow to deal with all kind of artifacts. Lastly, the

Cheetah flow execution path has no dynamic dependencies

except for a few well-defined exceptions. This principle

provides robustness in execution of a workflow and

reproducibility of its results.

B. Enter Project Scope (EPS)

EPS is a process of onboarding a user to the Cheetah Design

System workarea (landing into specified disk space) with the

defined contour of data and tool configurations. EPS can be

operated in three modes; interactive, command line or batch.

Interactive mode prompts the user to select only the

hierarchical project configuration, and workarea

configuration definition (repositories to populate). It then

auto-selects the rest of the required data selection from the

configuration if present. If the data is not present, it will

prompt the user to enter the required data. Command line

mode expects all the selections to be present in the command

line and enters to the new shell otherwise it will error out.

Batch mode is similar to command line mode except it

executes the command in the project shell and exits the shell

once completed.

Once all the required data is obtained EPS starts the process

of onboarding to the workarea. It does this by washing the

required UNIX groups into the new shell, merging all the

Cheetah Design System Infrastructure ©2019 IEEE

hierarchical configurations files, creating a workarea on a

predefined disk if it does not already exist. It then sets up

minimum environment variables, loads the infrastructure

related tools and environment, sets the initial license(s), sets

the aliases and finally enters to the workarea for the Work

Flow Script (WFS) execution.

Example structure of the project configuration:

<cheetah-cfg-root>/Domain/BU/cthconfig.xml

 /cthconfig.iind.xml

 /Project/EG1/cthconfig.xml

 /Stepping/A0/cthconfig.xml

 /Project/EG2/cthconfig.xml

 /Stepping/A0/cthconfig.xml

Figure 2.0: EPS on-boarding to user work area

C. Design Package

The Design Package consists of two major components,
technology libraries and the Product Design Kit (PDK). These
components use XML to describe characteristics and metadata
of its own in order to ensure simplicity and flexibility. An
example of this schema is shown in Figure 3.0. The major
feature of this schema is to strictly enforce usage of a single
XML element category, having only two attributes— name
and value, to describe a classification it represents. The
simplicity of this element allows the same category structure
to nest within itself as much as needed, creating a complete set
of classifications associated to the metadata file or directory.

<xs:element name="category">

 <xs:complexType>

 <xs:choice maxOccurs="unbounded" minOccurs="0">

 <xs:element name="file" type="xs:string"/>

 <xs:element name="dir" type="xs:string"/>

 <xs:element ref="category"/>

 </xs:choice>

 <xs:attribute type="xs:string" name="name"

use="optional"/>

 <xs:attribute type="xs:string" name="value"

use="optional"/>

 </xs:complexType>

</xs:element>
 Figure 3.0: Category Schema

The schema also allows for a ‘table of contents’ section which

houses all classifications used in the XML manifest. This

feature enables a Work Flow Script (WFS) developer to

lookup valid classifications and construct the correct Design

Package query that fetches either a design view of a library,

or a technology node data from the PDK.

As the schema is designed to be modular, generating a new

XML instance is greatly simplified. A Perl function is

provided to associate a classification category to a file or

directory metadata. This process repeats to create other set of

metadata that makes a complete PDK or Library component.

At this juncture, a process developer may decide to use the

function provided to convert this component into physical

XML file for tool release. While the generated file is likely to

be correct-by-construction, a utility script is supplied to

validate the XML file.

For WFS developers, Perl API’s are provided to query for

metadata of this instance. And as the XML instance is built

on identical schema, identical API’s can be used across

components of Design Package.

D. Work Flow Script (WFS)

WFS is a PERL script used to prepare an environment for a

work flow based on a Populate-Prepare-Run-Archive (PPRA)

paradigm. A WFS is typically instantiated on a design block(s)

and a corresponding Flow Instance Directory (FID) is created

inside workarea.

In the PPRA paradigm, the “Populate” stage will pull

required data from the source repository into a user workarea

and create the corresponding FID. “Prepare” will create a

Flow Environment Snapshot (FES) where all required

metadata will be gathered such as design package information

or it will write necessary files into the FID that will be needed

later by the “Run” stage. In the “Run” stage, it will gather

required Point Tool Executables (PTE) and set up the PTE

from the corresponding stage and dispatch tasks for execution.

Finally, once WFS has generated its desired result, all design

data will be archived in “Archive” stage.

Cheetah Design System Infrastructure ©2019 IEEE

A WFS configuration consists of stages where each stage will

have a set of PTEs. The purpose of each stage is to help WFS

to handle situations when different PTEs (or settings) are

needed in different scenarios within a single WFS script. For

example, PTE ‘VendorTool’ version 1.0 is needed when

processing Task A but PTE ‘VendorTool’ v 2.0 is needed to

process Task B. In this case, a WFS configuration can create

two stages: stage A which has PTE ‘VendorTool’ v 1.0 while

stage B has PTE ‘VendorTool’ v 2.0. So when a WFS is

processing Task A it will load PTE ‘VendorTool’ in stage A

and load PTE ‘VendorTool’ v 2.0 in stage B when processing

Task B. This provides enough flexibility to WFS to handle

different scenarios that are needed for different settings.

In Cheetah Backbone Infrastructure, the FlowBase

component is an interface module which provides APIs for

WFS to retrieve the necessary information from components

in the backbone such as getting design package content from

DesignPackage module. The purpose of creating a FlowBase

component is to provide a ready utility to a WFS without

spending effort to understand how the Cheetah Backbone

Infrastructure works behind the scene. Figure 4.0 illustrates

the example of retrieving information of PDK with or without

FlowBase component. This not only saves a developer’s

ramp up time but also, using the API provided by FlowBase,

the WFS will not get impacted by any code refactoring

happening behind Cheetah Backbone components as long as

the output of the API remains the same.

Figure 4.0: Example how WFS retrieves PDK object with/without

going through FlowBase

E. Point-Tool-Executable (PTE)

The PTE component is aimed to create a runtime

environment for the execution of tools. A PTE can be a 3rd

party vendor tool or internal software packages which can be

called directly by users or from a WFS. A PTE configuration

resides in stages listed in a WFS. There are two ways to load

a PTE: call a loadPte() API when running a WFS; or through

a utility script named pte_setup.

loadPTE() is an API which will retrieve a particular PTE

object and load content such as its environment variable

setup, alias setup and license setup accordingly.

pte_setup is a utility script provided by the Backbone

Infrastructure and exists for three purposes. First, it provides

callback mechanism from a vendor tool to initialize other

vendor tools. For example, some vendor tools use Tcl

language to build a complex workflow and a utility callback

script is necessary in order to invoke the Cheetah Backbone

Infrastructure content which is coded in Perl. Second, to

provide debugging functionality of the particular WFS. WFS

developers need a direct way to debug their WFS

configuration instead of debugging from their WFS script,

which will help WFS developers to ensure their PTE is being

configured correctly in every stage. Third, it allows for

standalone PTE setup outside of a WFS run. This is especially

useful when a WFS is unable to load a particular PTE. Instead

of debugging a WFS script, which may take extensive

debugging or compile time, pte_setup can be used as a first

hand debug to ensure a WFS/PTE configuration has been

configured correctly.

F. Job Management

Intel has its own native Load Balancing System, Cheetah has

accommodated the same. Load balancing helps optimize the

usage of CPU and memory consumptions; user machines can

submit the jobs to the execution server through compute

cluster. Although we only supported native load balancing

now, the object oriented and layered approach that

implemented in Cheetah Design System infrastructure is

allowed us to plug-in other job management system such as

LSF (Load Sharing Facility) quickly.

Four modes of job submission are supported: batch,

interactive, shell and local. In batch mode a job is submitted

to the batch pool and the command returns immediately. In

interactive mode a job is submitted to interactive pool and

the executing shell is blocking until the command returns. In

shell mode a job is submitted to interactive pool and

command gets executed in a terminal. In local mode job is

submitted to local host and command gets executes locally.

1) Job Submit

There are two ways to dispatch the jobs: call the createJob()

API when running a WFS; or through utility script named

cth_submit.

createJob() is an API which takes compute requirements

such as submission mode, required CPU, RAM, execution

host, logfile path and etc. as input data and dispatches the

task/job to native job submission tool. In verbose mode, a

job submission command is printed out which is useful for

debugging.

cth_submit is an utility script provided by the Cheetah

Infrastructure to dispatch the jobs to native job submission

tool or local execution. First, it provides for script callback to

submit jobs from other vendor tools. For example, some

vendor tools use Tcl language to build a complex workflow

and a utility callback script is necessary in order to invoke the

Cheetah Backbone Infrastructure content which is coded in

Perl. Second, to provide debugging functionality of the

particular WFS.

2) Job Operations

Job module provides a generic interface and methods to

control job execution e.g.: status, kill, suspend, resume of a

submitted job. These operations can be performed either

through APIs or using an interface script named

Cheetah Design System Infrastructure ©2019 IEEE

cth_jobOperations. Additionally, job querying provides the

status of the submitted jobs through native job submission

tool.

G. Configuration Management (cth_config)

The Cheetah Design System allows projects to define a

project configuration structure (XML based) that suits their

project-specific needs for the SOC or IP development. It is

very important that project administrator are able to create an

accurate and error-less project configuration that is processed

seamlessly by Cheetah Enter Project Scope (cth_eps) script.

cth_config is a Configuration File Editor which is created to

ensure that the project configuration is constructed correctly

before released to the project design environment. It supports

command line and Graphical User Interface (GUI) capability.

H. Design project management (cth_Indicator)

The Cheetah's backbone infrastructure has come up with

generic solution for Indicator catering to all BUs

requirements by providing many configurability options

including hooks for different parsing mechanism, database

options etc. With Cheetah being design system basic

configurability like overriding on project level, user level are

by product for Indicator solution. Currently 3 flows have

integrated with Indicator hooks and are able to capture the

design data in dashboard.

III. RESULT

Since Cheetah Infrastructure Backbone developed by taking

requirements from different available design systems, most

of basic requirements are provided in first production release.

In a span of few months 18 flows (WFS) are developed in

Cheetah design system. All these flows are using Backbone

infrastructure APIs and added only tool specific code in their

flows. I.e. Common backbone infrastructure enabled lean

WFS and shorter development time. This can be

demonstrated by looking into file size, overall backbone infra

code size is ~80k and every WFS code size in the range of

0.5k to 10k as per complexity. WFS development was not at

all complex, Infrastructure team provided consultation on

how to use the Backbone Infrastructure APIs in their WFS to

align with Cheetah’s “bare-metal” concept and that was

sufficient for WFS developers to follow. As of today, we

successfully enabled RTL2GDS, AMS and IP Handoff flow

as a pioneer WFS release and in same foot print continued for

Front End flows. Initial development was much focused on

feature and then we improved usability. Once we achieved

stable baseline of infrastructure we refactored the code and

improved speed by 60%-90% depends on the design

complexity. The benefit we are achieving here in Backbone

leads to overall improvement in Cheetah design system.

In the Design Package domain, the modular schema first

adopted in PDK and Library components has been proposed

to Design Data Management charter to be used to express a

design block’s manifest file. This manifest file contains

design bundles such as RTL, OpenAccess schematic or

layout, Register files, and secondary views such as GDS and

Spice netlists. The same concept can be applied where each

bundle has its associated classifications. Therefore, identical

XML capabilities can be used across PDK, Process Libraries

and Bundle.

Configuring Cheetah project with Configuration File Editor

is possible only in an hour, once the physical setup exists.

During new cheetah project configuration, this utility was

quite handy and helped to configure seamlessly.

At present, Cheetah has been deployed to 5 projects in three

business units spread across five geographical locations.

In the latest Cheetah infra backbone release we achieved the

performance efficiency by 90% and improved the strict XML

schema validation. Below table illustrates one of the example

to showcase the efficiency:

Cheetah

releases

Time taken by

Enter Project Scope

(EPS)

Conclusion

Old 100 seconds Taking long time

in merging all the

XML’s

New 9 seconds 90% efficiency

achieved after the

parser refactored

code
Table 1.0: Time taken by EPS versus performance efficiency

Paper on Cheetah infra backbone topic was submitted to

Intel’s premiere technical conference (DTTC) and got

selected for presentation.

IV. CONCLUSION

In summary, the Cheetah Design System is a “bare-metal”

design system which allows the modular design workflows to

be built on top of a scalable infrastructure whereas the

Backbone Infrastructure is software used to fulfill the

scalable infrastructure criteria. In order to align with set

goals, a set of design principles being used to design Cheetah

Design System Infrastructure (aka Backbone Infrastructure)

to ensure we could move to more native point-tool-executable

usage and shift to vendor supported design workflows.

Backbone Infrastructure comprises backbone capabilities

such as Enter Project Scope, PTE, Design Package, Job

Management and Flowbase which were discussed in the

details of this paper. All these Backbone Infrastructure

capabilities are needed for different design workflow

execution and are accessible via APIs that provide consistent

access to the underlying IT infrastructure and design system

components. Backbone Infrastructure needs to continue to

align with the bare-metal concept by strongly adhering to

design principles. It needs to extend its capabilities and

integrate all design workflows from system level until tape-

in to Cheetah in order to help Intel win new market segments.

As for the first step to win, the Cheetah Design System

Infrastructure has already been successfully enabled for new

technologies. The next step is to await feedback from projects

for further improvements in full execution mode.

Cheetah Design System Infrastructure ©2019 IEEE

V. ACKNOWLEDGMENT

The authors would like to take this opportunity to

acknowledge and thank the Cheetah Infrastructure architects

Marek Rouchal, Olson Christopher and Jarod Eells for their

guidance and technical direction in order to make Cheetah

Backbone Infrastructure a success. Special thanks to

Backbone Infrastructure development team for the efforts;

Sheau Lan Lee, Satiaseelan Selvan, Puneeth H K, Chong

Yuong Chee, Pavan Ghooli, Bharathi Chandra Shekara and

Chaitanya Pande.

Many others contributed to the development of Cheetah

Backbone Infrastructure; some of these are, in no particular

order, Sankarshanan Pillaipakkam, Martin Maurer, Michael

Penner, Brian Lee and Dhananjay Haridas.

REFERENCES

 Cheetah Design System Infrastructure is an internal

tool developed in Intel and uses the learnings from

previous Design Systems

 Hui Chyn Ng, Michael Wirth, Divya Ramarao,

Michelle Mian Yiung Phoon, Shih Peng Tan,

“Cheetah: innovation of design system

infrastructure”, in press.

 Chee Chong Yuong, Susmita Pal, Prateeksha

Keshari, Hui Chyn Ng, “Configuration file editor for

effective cheetah configuration management”,

unpublished.

AUTHORS BIO

Divya Ramarao is with PESG-Design Infrastructure team in

Intel India. She is currently working as a tech lead/scrum

master in the Cheetah Design System Infrastructure space.

She is also one of the key developer on Cheetah Infrastructure

and also driving the topics for future Infrastructure releases.

Since 2006 she has been also working on various in-house

tools and methodologies for the success of mobile products.

Mahesh Deshpande is with PESG-Design Infrastructure

team in Intel India. He is currently working as a program

manager and immediate manager for the cheetah

infrastructure.

Susmita Pal is a Computer Aided Design Engineer in PESG-

Design Infrastructure team at Intel India. She is one of the

key developer and played significant role in developing

various component in Cheetah Infrastructure.

Prateeksha Keshari is a Computer Aided Design Engineer

in PESG-Design Infrastructure team at Intel India. She is one

of the developer for the Cheetah Infrastructure and has

contributed significantly towards several components.

