
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Dual-Purpose Hardware Accelerator to implement a

High-throughput FFT and Sorting Engine

Indu Prathapan

Embedded Processing

Texas Instruments

Bangalore, India

induprathapan@ti.com

Pankaj Gupta

Analog Signal Chain

Texas Instruments

Bangalore, India

pankajgupta@ti.com

Abstract—This paper describes a novel architecture for

sorting binary numbers in hardware, based on a Radix-2 single

delay feedback (R2SDF) architecture that is popularly used to

implement pipelined Fast Fourier Transform (FFT)

processors. The sorting algorithm used in this implementation

is bitonic sorting. The spatial regularity of the bitonic sorting

network and its similarity to FFT’s signal flow graph (SFG) is

exploited to map its comparator stages to the pipelined stages

of the R2SDF FFT hardware with negligible area increase as

compared to the original FFT engine. The data-path

components like radix-2 butterfly units in a R2SDF FFT are

replaced with 2-input comparators and some additional control

logic for sorting engine. The proposed hardware accelerator

can be configured by software to either compute FFT of N data

elements or sort the N elements in linear order. For sorting N

binary numbers fed into the proposed sorting engine in a serial

order, a total of Θ(N*log2N) clock cycles are required. This is

equal to the theoretical upper bound for sorting speed

achievable with any comparison based sorting algorithm. The

throughput of the serial hardware accelerator is further

improved by 4x by increasing the parallelism in both the FFT

engine and the Sorting engine. The proposed architecture is

implemented in 45nm CMOS technology, meeting 400 MHz

clock frequency.

Keywords—sorting, bitonic, R2SDF, FFT, pipelined

architecture

I. INTRODUCTION

The Fast Fourier Transform (FFT) operations that are
commonly used in digital signal processing have a regular
structure that makes it an ideal candidate for direct
implementation in hardware accelerators. The hardware
accelerators offload common signal processing operations
that are computationally-intensive from the core processor
and thus, allowing it to focus on other general-purpose tasks.
This approach boosts up the effective computational
throughput of the processor and hence, the overall system
performance.

Sorting is also one of the key functions performed by
computer programs as an internal step for many data
processing and computer graphics applications. Many
algorithms used in signal processing applications need input
data to be in sorted order. There are numerous, well
researched, fast and efficient sorting algorithms described in
literature[1][2], but practically the main bottleneck for
implementing sorting on a processor involves memory
access latency, limited bandwidth, and memory contentions
that are completely system dependent.

This paper focuses on an implementation for sorting
using a hardware accelerator. Radix-2 single-delay-feedback
(R2SDF) is a popular pipelined implementation for FFT
accelerator design that is optimized with respect to memory

structure, control units, and processing elements [4][5]. In
the proposed hardware sorting implementation, the well-
known bitonic sorting network[3] is adopted and mapped to
the R2SDF FFT structure. This allows us to re-use most of
the R2SDF hardware logic with the exception of data-path
elements like butterfly units and multipliers which get
replaced by sorting specific hardware units like compare and
exchange units.

We present a detailed description of the design and
implementation of a dual-purpose sorting and FFT
accelerator that are very relevant to modern day systems that
needs both FFT and sorting operations for its algorithms to
implemented. We also describe a method to improve the
throughput of the system by introducing a higher degree of
parallelism into the hardware accelerator engine. Although
this paper refers to a dual-purpose FFT and Sorting
accelerator, the proposed architecture can also be used to
implement a stand-alone sorting accelerator, with
performance that matches the theoretical upper bound using
any comparison based sorting algorithm, consuming a
modest on-chip memory of size N data words. Throughout
this paper, we use N to denote the size of a real-data
sequence to be sorted and also to denote the size of FFT.
Without losing generality, we assume N is a power of two.

The rest of this paper is organized as follows. In Section
II, we discuss the bitonic sorting algorithm. We, then, discuss
R2SDF FFT architecture in Section III. In Section IV, we
propose our dual-purpose hardware (HW) accelerator
architecture in detail. Section VI provides HW
implementation complexity of the proposed solution. Finally,
we present our conclusions in Section VII.

II. BITONIC SORTING ALGORITHM

A bitonic sequence is a sequence of elements (a0, a1, …, aN-1)
that satisfies either of the below two conditions

1. There exits an index i, 0 ≤ i ≤ N-1, such that (a0, …, ai)

is monotonically increasing and (ai+1, …, aN-1) is

monotonically decreasing.

2. There is a cyclic shift of indices so that (1) is satisfied.

For example, {1, 4, 6, 8, 3, 2}, {6, 9, 4, 2, 3, 5} and {9, 8, 3,
2, 4, 6} are bitonic sequences.

Given a bitonic sequence of size N, if we divide the
sequence into two halves and do a compare-and-exchange
operations for each of the elements ai and ai+N/2, we get two
bitonic sequences in which all the values in one sequence are
smaller than the values of the other. Applying these
operations to a bitonic sequence recursively, we get a
monotonically sorted sequence. Bitonic sorting algorithm
takes advantage of this property of the bitonic sequences to

generate a parallel sorting network [3].

Fig.1 shows the signal flow graph of a Bitonic network for
sorting a data sequence of size 8 with random inputs. The
arrows indicate the two elements to compare (located at the
head and tail of each arrow) and the direction to swap them
such that we end up with the smallest element at the tail.

A bitonic sorting network consists of the following two
operations:

1. Rearrangement of an unsorted data sequence (Seq-A)

into a bitonic sequence (Seq-C). This is performed in the

first log2N - 1 stages.

2. Rearrangement of the Bitonic sequence(Seq-C) into a

sorted sequence (Seq-D) is performed in the last stage.

Input data (Seq-A) is considered to be bitonic sequence
of length 2. With parallel compare-and-exchange operations
in opposite directions for adjacent sequences in first stage
(S1), pairs of adjacent numbers are converted into bitonic
sequences of length 4 (Seq-B). Subsequent stages continue
with the same operations until a bitonic sequence of length N
(Seq-C) is generated. The last stage (S3) then converts the
bitonic sequence Seq-C into a sorted sequence Seq-D.

A parallel implementation of bitonic sorting network
sorts N elements in Θ(log2N) clock cycles using Θ
(N*log2N) comparators, assuming that the outputs of all
compare-swap units are pipelined. However, the availability
for N elements at the same time is not practically possible in
a system, especially if N is large. Hence, we will target
sorting N elements in Θ(N*log2N) clock cycles, that is equal
to the worst case comparisons required to sort N elements in
any comparison sort[2].

III. RADIX-2 SINGLE DELAY FEEDBACK (R2SDF) FFT

ARCHITECTURE

 This is a well-known structure for the
implementation of pipelined FFT processors [4][5]. It
consists of log2N pipelined butterfly stages where N is the
number of FFT points. Delay elements using memory or shift
registers are present in the feedback path of the butterfly
units in all stages. Signal flow graph (SFG) of an 8-point
FFT and its mapping to an 8-point R2SDF FFT structure is
illustrated in Fig. 2. Every stage of the SFG maps to one of
the pipeline stages in R2SDF. Delay-lines (or feedback path)
of length 2m are required for each of the m stages, where m
ranges from 0 to log2N - 1. The number of delay elements in
each stage is equal to vertical “distance” between the

butterfly input pair for that stage in the SFG. In R2SDF FFT,
the inputs are given in serial manner. The numbers on the
delay–lines in Fig. 2 indicates the number of complex
samples it can store.

The latency of the R2SDF structure is Θ(N) cycles that
corresponds to the sum of all delay elements across all the
stages. Since, this architecture is completely pipelined, a
throughput of 1 clock cycle per sample can be achieved after
the initial latency. Another advantage with R2SDF
architecture is the simple control structure for FFT
computation. The control structure requires a log2N bit
binary counter [4][5].

In the Fig. 2, BF2 denotes a Radix-2 butterfly unit. This
unit carries out addition, subtraction and twiddle factor
multiplications. When the mux control (Cn) is 0, the butterfly
remains idle and data passes through without any processing
and when the control is 1, the butterfly unit processes the
incoming samples. Every clock cycle, one of the butterfly
outputs is stored back into the delay (or feedback) element
and the other is passed onto the next stage.

IV. PROPOSED DUAL-PURPOSE HARDWARE ACCELERATOR

ARCHITECTURE

The similarity of signal permutation and spatial regularity
of the bitonic sorting network with a FFT’s SFG allow us to
re-use R2SDF FFT engine for implementing the sorting
algorithm. In this section, we present dual purpose hardware
accelerator architecture. We describe both the bitonic sorting
network and the R2SDF architecture in details in the below
sections.

8

7

6

5

4

3

2

1

7

8

6

5

3

4

2

1

5

6

7

8

4

3

2

1

1

2

3

4

5

6

7

8

Seq-A Seq-B Seq-C Seq-D

S1 S2 S3

Fig.1 : Bitonic Network for N = 8

Di

Di

C2

C1

BF2

44

BF2

2

BF2

1

BF2

-

+

0

0

BF2

X

Cn

0 1 2 3 4 5 6 7

0' 1' 2' 3' 4' 5' 6' 7'Do

C0

C2 C1 C0

Do

Twiddle
Factor

Stage1 Stage2 Stage3

Fig. 2 : R2SDF FFT Structure for N=8

Seq-A Seq-B Seq-C Seq-D

S1 S2 S3

8

7

6

5
4

3

2

1

7

8

6

5
3

4

2

1

5

6

7

8
4

3

2

1

1

2

3

4
5

6

7

8

4

CE2

2

CE2

1

CE2

Di

C2 C1 C0

Do

(a) Alternate SFG for a Bitonic network for N=8 (b) R2SDF implementation of Bitonic network for N=8

Fig.3 : Mapping a bitonic sorting network to a R2SDF structure for N = 8 (with number of iterations = 3)

0

0

>

Cn[1]Cn[0]

CE28 7 6 5 4 3 2 1Di(Seq-A)

7 8 6 5 3 4 2 1

5 6 7 8 4 3 2 1

1 2 3 4 5 6 7 8

Do(Seq-B)

Do(Seq-C)

Do (Seq-D)

C2

C1

C0

0 3 00 0 0 0 0

0 0 0 0 0 2 0 3 0 2 0 2

0 2 0 3 0 2 0 3 0 2 0 2 0 3 0 3 0 2 0 2 0 2 0 2

2

(a) Signals at various nodes of R2SDF Sorting engine (b) Compare-Exchange unit

Fig.4 : Waveforms for R2SDF Sorting Engine for N=8

A. Mapping the Bitonic Network to R2SDF structure

 The proposed hardware sorting accelerator is based on
the bitonic sorting algorithm implemented using the R2SDF
structure. The bitonic network shown in Fig.1 is redrawn in
Fig.3a to map it to an equivalent N point FFT SFG. New
connectors (without an arrow) can be seen in this SFG that
corresponds to “flow-through” operations, i.e. the data
elements at the two ends of the connector do not perform a
compare-exchange operation but rather flows through the
network without any swap of data locations. The new SFG
for sorting with “flow-through” enables mapping of each
stage of the bitonic network to an N-point R2SDF. These
“flow-through” connections in the SFG are introduced to
maintain a steady flow of data across all the pipelined stages
of the hardware engine similar to FFT data flow.

Fig.3-b shows the proposed hardware pipelined
implementation of the bitonic sorting network for N=8 using
the R2SDF FFT structure by replacing the Radix-2 butterfly
(BF2) units with a 2-input compare-exchange units (CE2) as
shown in Fig.4b. The R2SDF structure (with BF2 replaced
with CE2) in Fig. 3b now maps to each stage of the bitonic
network in Fig. 3a. We will call this structure an N-sample
Bitonic Sorter (BS).The N-sample BS is used iteratively
log2N times to implement an N-sample Bitonic Network.

Memory or shift registers in feedback path are used to
implement the delay elements in all stages. The width of the
delay elements must be equal to or greater than the width of
the incoming data stream to be sorted. Hence, if the FFT uses
delay elements of width b to store its intermediate data with
real and imaginary parts of b/2 bits each, then the same delay
elements can be re-used for sorting real data samples of bit-
width b. The “distance” of the compare-exchange units in

each stage is same as the “distance” of the butterfly units
used in FFT pipeline stages. However, the "direction" of
compare-exchange operations is not fixed during the course
of the bitonic sort algorithm. This unit will thus have a 2-bit
control to additionally specify the “direction” of compare-
exchange as described below:

0: Bypass compare-exchange corresponding to "flow-
through" operation in SFG. Store the data from the previous
stage into its memory. Send the oldest data from its memory
to the next stage

2: Compare data from previous stage with the oldest data
in its memory. Store the larger data to its memory and pass
the smaller data to the next stage.

3: Compare data from previous stage to the oldest data in
its memory. Store the smaller data into its memory and pass
the bigger data to the next stage.

This control code has a symmetry and pattern associated
to it. This can be easily generated using counter bits from
modulo-N binary counter and modulo-log2N binary counter
associated with each stage.

For sorting a real data array of length N, all the log2N
stages of the R2SDF structure (Bitonic Sorter-BS) are used
with an extra feedback connection from the output back to
the input. The feedback connection ensures iterative use of
the R2SDF BS hardware log2N times, for implementing
log2N stages of the bitonic network. In the first iteration,
corresponding to the first stage of the bitonic sorting
network, the inputs are directly fed into the sorting engine
and only last pipeline stage (butterfly distance-1) is engaged
for compare-exchange operation. All the other stages operate
in bypass mode for the CE2 unit. In the second iteration,

corresponding to the second stage of the sorting network, the
last two pipeline stages (distance-2 and distance-1) are
engaged for compare-exchange operations with the
remaining stages in bypass mode and so on. In the final
iteration, compare-exchange units of all the log2N stages are
engaged. Irrespective of the number of compare-exchange
units engaged in each iteration, all the log2N iterations have a
fixed latency of Θ(N) cycles. This is equal to the inherent
latency built into the R2SDF FFT structure. Hence, total
latency of the sorting engine using the R2SDF architecture is
equal to Θ(N*log2N) clock cycles. However, the R2SDF
structure when re-used in the context of sorting is not truly
pipelined since the hardware is locked until the log2N
iterations are completed. Hence, the hardware can only sort
N elements in Θ(N*log2N) clock cycles before it can take the
next sample set for sorting. Thus, the effective throughput of
the R2SDF sorting accelerator is Θ(log2N) clock cycles per
sample

Fig.4a shows a sample data flow at the input and output
nodes of a sorting accelerator for N=8 with random input
data pattern. The entire sorting operation takes N*log2N
clock cycles, i.e. 24 clock cycles to complete from the time
last data was fed to the sorting accelerator.

V. IMPROVED PARALLELISM FOR COMBINED SORTING

AND FFT HARWARE ACCELERATOR

The FFT and sorting hardware accelerators described in
the previous sections are serial in nature i.e. they take in
serial data and gives out serial data after a fixed latency. For
a high performance system where the processor, bus fabric
and DMA has a wider bandwidth and can handle a higher
throughput, the relatively slow rate of data consumption and
data generation by the hardware accelerators brings down the
overall system performance. Hence, to avoid being a
performance bottleneck for the system, there is a need to
improve the data parallelism of the combined FFT and
Sorting Hardware Accelerator.

The FFT throughput can be increased by using higher
radix FFT structures. However, such higher radix FFTs are
typically very complex to design and the hardware re-use
between FFT engine and sorting engine also becomes very
challenging. Therefore, we have implemented a high
throughput FFT accelerator by stitching 4 parallel R2SDF
FFT engines in parallel as shown in Fig. 5. Here, m is used to
denote the sample indices in time-domain and k to denote the
indices in frequency domain where m and n varies from 0 to
(N/4)-1. In this architecture, 4 consecutive time domain
samples are fed to the 4 N/4 R2SDF FFT engines in parallel.
The four outputs of the N/4 point FFT engines are then
stitched together using a single radix-4 butterfly without

incurring any extra latency. In addition, both control logic

and twiddle factors are shared across all the 4 N/4 FFT
engines since they perform the same operation every clock.
The latency of the proposed FFT accelerator is thus reduced
to N/4 clock cycles, corresponding to the latency of the N/4
point FFT engine with a 4 times increase in throughput. The
memory complexity of the 4x throughput FFT architecture
still remains Θ(N). However, the number of butterfly units
(BF2) increases in number by a factor of 4.

The same hardware structure can be easily reused by the
sorting engine to improve its throughput and latency
numbers by 4x as shown in Fig. 6. Here, m is used to
represent the sample indices for input data and k used to
represent the output data ,where m and n varies from 0 to
(N/4)-1 .The number of iterations for sorting a data array of
length N still remains log2N. However, the clock cycles
required for each iteration is reduced by a factor of 4 due to
4x parallelism introduced. The latency of the 4x sorting
accelerator is thus, Θ((N*log2N)/4) clock cycles with an
effective throughput of Θ ((log2N)/4) clock cycles per
sample.A 4-input compare-exchange(CE) unit is introduced
to perform the permutation of output data samples streamed
out from the 4 parallel N/4 sorting engines. This 4-input CE
unit is engaged for compare-exchange operation only during
the last 2 iterations and it remains in bypass mode for the
initial iterations. The outputs of the 4 parallel N/4 sorting
engines(BS) are looped back to the input of the 4-input
compare-exchange units (log2N)-1 times.

VI. RESULTS

The area of a dual-purpose hardware accelerator (1x -
serial) that implements an FFT with complex data bit-width
of 24bits and a Sorting engine with real-data bit width of
48bits, synthesized at 400MHz is 0.44 sq.mm in 45nm
CMOS technology for N=4096.The area numbers for the
standard cell logic are largely dominated by the complex
multipliers in butterfly units for FFT. The delay elements are
implemented as single-port RAMs.

For a 4x throughput implementation, the area number is
0.98 sq.mm. This increase in area is largely contributed due
to a 4x increase in the number of butterfly units. The
additional area needed for implementing a sorting engine for
a 4x implementation with N=4096 and 48bit real data input
involves 44 binary comparators and 44*4*48 2:1
multiplexors and some additional control logic. This logic
turns out to be less than 0.06 sq.mm, that is around 5% of the
total accelerator area. The area and speed of the dual-purpose
FFT and sorting accelerator is summarized in Table 1

N/4-Point FFT

N/4-Point FFT

N/4-Point FFT

N/4-Point FFT

X

X

X

WN
k

WN
2k

WN
3k

x[4m]

x[4m+1]

x[4m+2]

x[4m+3]

X[k]

 X[k+N/2]

X[k+N/4]

X[k+3N/4]

4-Point FFT Computation

BF2

BF2

C=0
Tw=1

C=0
Tw=1

C= 0
Tw=j

C=0
Tw=1

BF2

BF2

Fig. 5 : 4x Throughput R2SDF FFT Accelerator

Implementation

x[4m+2]

x’[k+N/4]

x’[k+N/2]

x’[k+3N/4]

N/4-Point BS

N/4-Point BS

N/4-Point BS

N/4-Point BS

x[4m]

x[4m+1]

x[4m+3]

x’[k]CE2

CE2

CE2

CE2

A

B

C

D

D

B

C

A

4-input CE unit

Fig. 6 : 4x Throughput R2SDF Sorting Accelerator

TABLE 1: Dual Purpose Accelerator Area and Speed

Accelerator

Throughput
Mode

Processing

Engine

Area

(Sq.mm)

Cycles@400Mhz

(N = 4096)

1x
FFT Engine

0.44
4108

Sorting Engine 49296

4x
FFT Engine

0.98
1034

Sorting Engine 12408

VII. CONCLUSIONS

We have shown that a standard hardware accelerator used
to compute an N point FFT using an R2SDF architecture can
be re-used as a sorting accelerator without any significant
penalty in the circuit area. We first presented a novel serial
sorting implementation with time and memory complexity of
Θ(N*log2N) and Θ(N) that fits into a N-point FFT hardware
structure. We have further proposed a common architecture
with increased parallelism that results in a 4x improvement

in the throughput of both the FFT and the sorting
accelerators without any increase in memory complexity.
The proposed dual-purpose hardware accelerator architecture
can also be used to implement a standalone FFT or sorting
accelerator based on the system integration requirement.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming: Sorting and
Searching, Reading, MA: Addison-Wesley, 1998.

[2] T. Cormen, C. L. R. Rivest, and S. Clifford, Introduction to
Algorithms, 2nd ed. Boston, MA: McGraw-Hill Book Company,
2001

[3] K. E. Batcher, “Sorting networks and their applications,” in Proc.
AFIPS Spring Joint Comput. Conf., vol. 32, pp. 307–314, 1968.

[4] E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline FFT
processors for VLSI implementation”, IEEE Transactions on
Computers, vol. C-33, no. 5, pp. 414-426, May 1984.

[5] S. He and M. Torkelson, “A new approach to pipeline FFT
processor,” in Proc. IEEE Int. Parallel Processing Symp., 1996, pp.
766–770

