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Abstract—This paper describes a novel architecture for 

sorting binary numbers in hardware, based on a Radix-2 single 

delay feedback (R2SDF) architecture that is popularly used to 

implement pipelined Fast Fourier Transform (FFT) 

processors. The sorting algorithm used in this implementation 

is bitonic sorting. The spatial regularity of the bitonic sorting 

network and its similarity to FFT’s signal flow graph (SFG) is 

exploited to map its comparator stages to the pipelined stages 

of the R2SDF FFT hardware with negligible area increase as 

compared to the original FFT engine. The data-path 

components like radix-2 butterfly units in a R2SDF FFT are 

replaced with 2-input comparators and some additional control 

logic for sorting engine. The proposed hardware accelerator 

can be configured by software to either compute FFT of N data 

elements or sort the N elements in linear order. For sorting N 

binary numbers fed into the proposed sorting engine in a serial 

order, a total of Θ(N*log2N) clock cycles are required. This is 

equal to the theoretical upper bound for sorting speed 

achievable with any comparison based sorting algorithm. The 

throughput of the serial hardware accelerator is further 

improved by 4x by increasing the parallelism in both the FFT 

engine and the Sorting engine. The proposed architecture is 

implemented in 45nm CMOS technology, meeting 400 MHz 

clock frequency. 

Keywords—sorting, bitonic, R2SDF, FFT, pipelined 

architecture 

I. INTRODUCTION 

The Fast Fourier Transform (FFT) operations that are 
commonly used in digital signal processing have a regular 
structure that makes it an ideal candidate for direct 
implementation in hardware accelerators. The hardware 
accelerators offload common signal processing operations 
that are computationally-intensive from the core processor 
and thus, allowing it to focus on other general-purpose tasks. 
This approach boosts up the effective computational 
throughput of the processor and hence, the overall system 
performance. 

Sorting is also one of the key functions performed by 
computer programs as an internal step for many data 
processing and computer graphics applications. Many 
algorithms used in signal processing applications need  input 
data to be in sorted order. There are numerous, well 
researched, fast and efficient sorting algorithms described in 
literature[1][2], but practically the main bottleneck for 
implementing sorting on a processor involves memory 
access latency, limited bandwidth, and memory contentions 
that are completely system dependent. 

This paper focuses on an implementation for sorting 
using a hardware accelerator. Radix-2 single-delay-feedback 
(R2SDF) is a popular pipelined implementation for FFT 
accelerator design that is optimized with respect to memory 

structure, control units, and processing elements [4][5]. In 
the proposed hardware sorting implementation, the well-
known bitonic sorting network[3] is adopted and mapped to 
the R2SDF FFT structure. This allows us to re-use most of 
the R2SDF hardware logic with the exception of data-path 
elements like butterfly units and multipliers which get 
replaced by sorting specific hardware units like compare and 
exchange units. 

We present a detailed description of the design and 
implementation of a dual-purpose sorting and FFT 
accelerator that are very relevant to modern day systems that 
needs both FFT and sorting operations for its algorithms to 
implemented.  We also describe a method to improve the  
throughput of the system by introducing a higher degree of 
parallelism into the hardware accelerator engine. Although 
this paper refers to a dual-purpose  FFT and Sorting 
accelerator, the proposed architecture can also be used to 
implement a stand-alone sorting accelerator, with 
performance that matches the theoretical upper bound using 
any comparison based sorting algorithm, consuming a 
modest on-chip memory of size N data words. Throughout 
this paper, we use N to denote the size of a real-data 
sequence to be sorted and also to denote the size of FFT. 
Without losing generality, we assume N is a power of two. 

The rest of this paper is organized as follows. In Section 
II, we discuss the bitonic sorting algorithm. We, then, discuss 
R2SDF FFT architecture in Section III. In Section IV, we 
propose our dual-purpose hardware (HW) accelerator 
architecture in detail. Section VI provides HW 
implementation complexity of the proposed solution. Finally, 
we present our conclusions in Section VII. 

II. BITONIC SORTING ALGORITHM 

A bitonic sequence is a sequence of elements (a0, a1, …, aN-1) 
that satisfies either of the below two conditions  

1. There exits an index i, 0 ≤ i ≤  N-1, such that (a0, …, ai)  

is monotonically increasing and (ai+1, …, aN-1) is 

monotonically decreasing. 

2. There is a cyclic shift of indices so that (1) is satisfied. 

For example, {1, 4, 6, 8, 3, 2}, {6, 9, 4, 2, 3, 5} and {9, 8, 3, 
2, 4, 6} are bitonic sequences. 

Given a bitonic sequence of size N, if we divide the 
sequence into two halves and do a compare-and-exchange 
operations for each of the elements ai and ai+N/2, we get two 
bitonic sequences in which all the values in one sequence are 
smaller than the values of the other. Applying these 
operations to a bitonic sequence recursively, we get a 
monotonically sorted sequence. Bitonic sorting algorithm 
takes advantage of this property of the bitonic sequences to  



 
generate a parallel sorting network [3]. 

Fig.1 shows the signal flow graph of a Bitonic network for 
sorting a data sequence of size 8 with random inputs. The 
arrows indicate the two elements to compare (located at the 
head and tail of each arrow) and the direction to swap them 
such that we end up with the smallest element at the tail. 

A bitonic sorting network consists of the following two 
operations: 

1. Rearrangement  of an unsorted data sequence (Seq-A) 

into a bitonic sequence (Seq-C). This is performed in the 

first  log2N - 1 stages. 

2. Rearrangement of the Bitonic sequence(Seq-C) into a 

sorted sequence (Seq-D) is performed in the last stage. 

Input data (Seq-A) is considered to be bitonic sequence 
of length 2. With parallel compare-and-exchange operations 
in opposite directions for adjacent sequences in first stage 
(S1), pairs of adjacent numbers are converted into bitonic 
sequences of length 4 (Seq-B). Subsequent stages continue 
with the same operations until a bitonic sequence of length N 
(Seq-C) is generated. The last stage (S3) then converts the 
bitonic sequence Seq-C into a sorted sequence Seq-D. 

A parallel implementation of bitonic sorting network 
sorts N elements in Θ(log2N) clock cycles using Θ 
(N*log2N) comparators, assuming that the outputs of  all 
compare-swap units are pipelined. However, the availability 
for N elements at the same time is not practically possible in 
a system, especially if N is large. Hence, we will target 
sorting N elements in Θ(N*log2N) clock cycles, that is equal 
to the worst case comparisons required to sort N elements in 
any comparison sort[2]. 

III. RADIX-2 SINGLE DELAY FEEDBACK (R2SDF) FFT 

ARCHITECTURE 

 This is a well-known structure for the 
implementation of pipelined FFT processors [4][5]. It 
consists of log2N pipelined butterfly stages where N is the 
number of FFT points. Delay elements using memory or shift 
registers are present in the feedback path of the butterfly 
units in all stages. Signal flow graph (SFG) of an 8-point 
FFT and its mapping to an 8-point R2SDF FFT structure is 
illustrated in Fig. 2. Every stage of the SFG maps to one of 
the pipeline stages in R2SDF. Delay-lines (or feedback path) 
of length 2m are required for each of the m stages, where m 
ranges from 0 to log2N - 1. The number of delay elements in 
each stage is equal to vertical “distance” between the 

butterfly input pair for that stage in the SFG. In R2SDF FFT, 
the inputs are given in serial manner. The numbers on the 
delay–lines in Fig. 2 indicates the number of complex 
samples it can store. 

The latency of the R2SDF structure is Θ(N) cycles that 
corresponds to the sum of all delay elements across all the 
stages. Since, this architecture is completely pipelined, a 
throughput of 1 clock cycle per sample can be achieved after 
the initial latency. Another advantage with R2SDF 
architecture is the simple control structure for FFT 
computation. The control structure requires a log2N bit 
binary counter [4][5]. 

In the Fig. 2, BF2 denotes a Radix-2 butterfly unit. This 
unit carries out addition, subtraction and twiddle factor 
multiplications. When the mux control (Cn) is 0, the butterfly 
remains idle and data passes through without any processing  
and when the control is 1, the butterfly unit processes the 
incoming samples. Every clock cycle, one of the butterfly 
outputs is stored back into the delay (or feedback) element 
and the other is passed onto the next stage. 

IV. PROPOSED DUAL-PURPOSE HARDWARE ACCELERATOR 

ARCHITECTURE 

The similarity of signal permutation and spatial regularity 
of the bitonic sorting network with a FFT’s SFG allow us to 
re-use R2SDF FFT engine for implementing the sorting 
algorithm. In this section, we present dual purpose hardware 
accelerator architecture. We describe both the bitonic sorting 
network and the R2SDF architecture in details in the below 
sections. 
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Fig.1 : Bitonic Network for N = 8 

Di

Di

C2

C1

 

BF2

44

BF2

2

BF2

1

BF2

-

+

0

0

BF2

X

Cn

0 1 2 3 4 5 6 7

0' 1' 2' 3' 4' 5' 6' 7'Do

C0

C2 C1 C0

Do

Twiddle
Factor

Stage1 Stage2 Stage3

 
Fig. 2 : R2SDF FFT Structure for N=8 
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Fig.4 : Waveforms for R2SDF Sorting Engine for N=8

A. Mapping the Bitonic Network to R2SDF structure 

 The proposed hardware sorting accelerator is based on 
the bitonic sorting algorithm implemented using the R2SDF 
structure. The bitonic network shown in Fig.1  is redrawn in 
Fig.3a to map it to an equivalent N point FFT SFG. New 
connectors (without an arrow) can be seen in this SFG that 
corresponds to “flow-through” operations, i.e. the data 
elements at the two ends of the connector do not perform a 
compare-exchange operation but rather flows through the 
network without any swap of data locations. The new SFG 
for sorting with “flow-through” enables mapping of each 
stage of the bitonic network to an N-point R2SDF. These 
“flow-through” connections in the SFG are introduced to 
maintain a steady flow of data across all the pipelined stages 
of the hardware engine similar to FFT data flow. 

Fig.3-b shows the proposed hardware pipelined 
implementation of the bitonic sorting network for N=8 using 
the R2SDF FFT structure by replacing the Radix-2 butterfly 
(BF2) units with a 2-input compare-exchange units (CE2) as 
shown in Fig.4b. The R2SDF structure (with BF2 replaced 
with CE2) in Fig. 3b now maps to each stage of the bitonic 
network in Fig. 3a. We will call this structure an N-sample 
Bitonic Sorter (BS).The N-sample BS is used iteratively 
log2N times to implement an N-sample Bitonic Network. 

Memory or shift registers in feedback path are used to 
implement the delay elements in all stages. The width of the 
delay elements must be equal to or greater than the width of 
the incoming data stream to be sorted. Hence, if the FFT uses 
delay elements of width b to store its intermediate data with 
real and imaginary parts of b/2 bits each, then the same delay 
elements can be re-used for sorting real data samples of bit-
width b. The “distance” of the compare-exchange units in 

each stage is same as the “distance” of the butterfly units 
used in FFT pipeline stages. However, the "direction" of 
compare-exchange operations is not fixed during the course 
of the bitonic sort algorithm. This unit will thus have a 2-bit 
control to additionally specify the “direction” of compare-
exchange as described below: 

0: Bypass compare-exchange corresponding to "flow-
through" operation in SFG. Store the data from the previous 
stage into its memory. Send the oldest data from its memory 
to the next stage 

2: Compare data from previous stage with the oldest data 
in its memory. Store the larger data to its memory and pass 
the smaller data to the next stage. 

3: Compare data from previous stage to the oldest data in 
its memory. Store the smaller data into its memory and pass 
the bigger data to the next stage. 

This control code has a symmetry and pattern associated 
to it. This can be easily generated using counter bits from 
modulo-N binary counter and modulo-log2N binary counter 
associated with each stage. 

For sorting a real data array of length N, all the log2N 
stages of the R2SDF structure (Bitonic Sorter-BS) are used 
with an extra feedback connection from the output back to 
the input. The feedback connection ensures iterative use of 
the R2SDF BS hardware log2N times, for implementing 
log2N stages of the bitonic network. In the first iteration, 
corresponding to the first stage of the bitonic sorting 
network, the inputs are directly fed into the sorting engine 
and only last pipeline stage (butterfly distance-1) is engaged 
for compare-exchange operation. All the other stages operate 
in bypass mode for the CE2 unit. In the second iteration, 



corresponding to the second stage of the sorting network, the 
last two pipeline stages (distance-2 and distance-1) are 
engaged for compare-exchange operations with the 
remaining stages in bypass mode and so on. In the final 
iteration, compare-exchange units of all the log2N stages are 
engaged. Irrespective of the number of compare-exchange 
units engaged in each iteration, all the log2N iterations have a 
fixed latency of Θ(N) cycles. This is equal to the inherent 
latency built into the R2SDF FFT structure. Hence, total 
latency of the sorting engine using the R2SDF architecture is 
equal to Θ(N*log2N) clock cycles. However, the R2SDF 
structure when re-used in the context of sorting is not truly 
pipelined since the hardware is locked until the log2N 
iterations are completed. Hence, the hardware can only sort 
N elements in Θ(N*log2N) clock cycles before it can take the 
next sample set for sorting. Thus, the effective throughput of 
the R2SDF sorting accelerator is Θ(log2N) clock cycles per 
sample 

Fig.4a shows a sample data flow at the input and output 
nodes of a sorting accelerator for N=8 with random input 
data pattern. The entire sorting operation takes N*log2N 
clock cycles, i.e. 24 clock cycles to complete from the time 
last data was fed to the sorting accelerator. 

V. IMPROVED PARALLELISM FOR COMBINED SORTING 

AND FFT HARWARE ACCELERATOR 

The FFT and sorting hardware accelerators described in 
the previous sections are serial in nature i.e. they take in 
serial data and gives out serial data after a fixed latency. For 
a high performance system where the processor, bus fabric 
and DMA has a wider bandwidth and can handle a higher 
throughput, the relatively slow rate of data consumption and 
data generation by the hardware accelerators brings down the 
overall system performance. Hence, to avoid being a 
performance bottleneck for the system, there is a need to 
improve the data parallelism of the combined FFT and 
Sorting Hardware Accelerator. 

The FFT throughput can be increased by using higher 
radix FFT structures. However, such higher radix FFTs are 
typically very complex to design and the hardware re-use 
between FFT engine and sorting engine also becomes very 
challenging. Therefore, we have implemented a high 
throughput FFT accelerator by stitching 4 parallel R2SDF 
FFT engines in parallel as shown in Fig. 5. Here, m is used to 
denote the sample indices in time-domain and k to denote the 
indices in frequency domain where m and n varies from 0 to 
(N/4)-1. In this architecture, 4 consecutive time domain 
samples are fed to the 4 N/4 R2SDF FFT engines in parallel. 
The four outputs of the N/4 point FFT engines are then 
stitched together using a single radix-4 butterfly without 

incurring any extra latency. In addition, both control logic  

 
and twiddle factors are shared across all the 4 N/4 FFT 
engines since they perform the same operation every clock. 
The latency of the proposed FFT accelerator is thus reduced 
to N/4 clock cycles, corresponding to the latency of the N/4 
point FFT engine with a 4 times increase in throughput. The 
memory complexity of the 4x throughput FFT architecture 
still remains Θ(N). However, the number of butterfly units 
(BF2) increases in number by a  factor of 4. 

The same hardware structure can be easily reused by the 
sorting engine to improve its throughput and latency 
numbers by 4x as shown in Fig. 6. Here, m is used to 
represent the sample indices for input data and k used to 
represent the output data ,where m and n varies from 0 to 
(N/4)-1 .The number of iterations for sorting a data array of 
length N still remains log2N. However, the clock cycles 
required for each iteration is reduced by a factor of 4 due to 
4x parallelism introduced. The latency of the 4x sorting 
accelerator is thus, Θ((N*log2N)/4) clock cycles with an 
effective throughput of Θ ((log2N)/4)  clock cycles per 
sample.A 4-input compare-exchange(CE) unit is introduced 
to perform the permutation of output data samples streamed 
out from the 4 parallel N/4 sorting engines. This 4-input CE 
unit is engaged for compare-exchange operation only during 
the last 2 iterations and it remains in bypass mode for the 
initial iterations. The outputs of the 4 parallel N/4 sorting 
engines(BS) are looped back to the input of the 4-input 
compare-exchange units (log2N)-1 times.  

VI. RESULTS 

The area of a dual-purpose hardware accelerator (1x -
serial) that implements an FFT with complex data bit-width 
of 24bits and a Sorting engine with real-data bit width of 
48bits, synthesized at 400MHz is 0.44 sq.mm in 45nm 
CMOS technology for N=4096.The area numbers for the 
standard cell logic are largely dominated by the  complex 
multipliers in butterfly units for FFT. The delay elements are 
implemented as single-port RAMs. 

For a 4x throughput implementation, the area number is 
0.98 sq.mm. This increase in area is largely contributed due 
to a 4x increase in the number of butterfly units. The 
additional area needed for implementing a sorting engine for 
a 4x implementation with N=4096 and 48bit real data input 
involves 44 binary comparators and 44*4*48 2:1 
multiplexors and some additional control logic. This logic 
turns out to be less than 0.06 sq.mm, that is around 5% of the 
total accelerator area. The area and speed of the dual-purpose 
FFT and sorting accelerator is summarized in Table 1 
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Fig. 5 : 4x Throughput  R2SDF FFT Accelerator  
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TABLE 1: Dual Purpose Accelerator Area and Speed 

Accelerator  

Throughput 
Mode 

Processing  

Engine 

Area 

(Sq.mm) 

Cycles@400Mhz 

(N = 4096) 

1x 
FFT Engine 

0.44 
4108 

Sorting Engine 49296 

4x 
FFT Engine 

0.98 
1034 

Sorting Engine 12408 

VII. CONCLUSIONS 

We have shown that a standard hardware accelerator used 
to compute an N point FFT using an R2SDF architecture can 
be re-used as a sorting accelerator without any significant 
penalty in the circuit area. We first presented a novel serial 
sorting implementation with time and memory complexity of 
Θ(N*log2N) and Θ(N) that fits into a N-point FFT hardware 
structure. We have further proposed a common architecture 
with increased parallelism that results in a 4x improvement 

in the throughput of both the FFT and the sorting 
accelerators without any increase in memory complexity. 
The proposed dual-purpose hardware accelerator architecture 
can also be used to implement a standalone FFT or sorting 
accelerator based on the system integration requirement. 
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