
©2018 IEEE

Functional safety in multicore heterogeneous

systems for automotive surround view applications
Vibha Pant, Piyali Goswami, Sujith Shivalingappa

Embedded Processing,

Texas Instruments

Bangalore, India

Email: v-pant@ti.com, piyali_g@ti.com, sujith.s@ti.com

Abstract—Driverless cars are the next step in the evolution

of the automotive industry. Advanced Driver Assistance

Systems (ADAS) are the stepping stones to achieve and

enhance the driving experience and more importantly safety in

automotive systems. Safety standards such as ISO 26262 define

Automotive Safety Integration Levels (ASIL) depending on the

severity and probability of an error which may lead to

loss/harm to life. Automotive electronic control units (ECUs)

are made up of multi-core heterogeneous SoCs. Making all

components of an automotive ECU to the highest ASIL level is

not feasible due to significant cost and effort. This paper looks

at software and hardware methods to have mixed safety levels

co-exist in a heterogeneous SoC environment targeting

surround view ADAS system while incorporating AUTOSAR

requirements.

Keywords—ADAS, Multi-Core Heterogeneous SoCs,

AUTOSAR, functional safety, FFI

INTRODUCTION

Automotive embedded systems are safety critical systems
wherein errors or failures could result in injury or loss of
human life, loss or severe damage to equipment, or
environmental harm. Functional safety relates to the correct
operation of a system while preventing life-threatening
hazards with safe management of likely errors and failures.
This involves identifying safety functions and assessing the
risks. ISO26262 is an international standard for functional
safety in the automotive domain. ISO26262 defines different
Automotive Safety Integrity Levels (ASIL) for classifying
the risk. A system can be classified based on the failure rate
and the effectiveness of failure detection. The integrity
requirements range from Quality Managed (QM), ASIL A to
ASIL D. A system classified as ASIL D, the highest integrity
requirement, would be extremely robust in preventing the
occurrence of failures which would cause life-threatening
consequences. QM systems, on the other hand, do not dictate
any safety requirements in accordance with ISO26262
[1][15].

With autonomous vehicles gaining momentum, automotive
systems gain complexity day by day. Heterogeneous multi-
core systems are deployed to achieve the specific processing
requirements of such advanced signal processing
applications [2-5]. This makes achieving functional safety in
such systems even more challenging. The ideal scenario is to
have all components at the highest safety integrity level.
However, this is not feasible as it makes the system complex
and incurs significant development costs.

The automotive surround view (SRV) camera system is an
automotive ADAS (Advanced Driver Assistance System)
technology that’s rapidly gaining importance. It allows the
driver to see a top to down view of the 360-degree
surroundings of the vehicle. A typical SRV system normally
comprises of four to six wide-angle (fish-eye lens) cameras
mounted around the vehicle, each facing a different direction

[6][7][13]. A composite view of the surroundings of the
vehicle is synthesized from these inputs from the camera and
shown to the driver in real-time during parking. In order to
generate a precise image, many components are required
such as capture unit, display unit, synthesis creation,
geometric alignment and photometric alignment.
Additionally, such systems are equipped with advanced
algorithms for pedestrian and vehicle detection. These tasks
are distributed over different cores in a SoC for optimal
utilization and performance [13][21]. A typical surround
view system is shown in Figure 1.

The interaction with the vehicle CAN network is the highest

critical task in such systems. This component monitors the

execution of the rest of the system and notifies and contains

system failures. Typically this component would be

executing the AUTOSAR software stack. AUTOSAR

(Automotive Open System Architecture) is a standard for the

development of software for embedded devices, primarily

created for the automotive domain. It specifies a software

architecture which provides a common ground for building

applications at a certain level of safety [8][16].

Capture and display units, on the other hand, need to detect

sensor, display failures and need to operate at a fixed

performance rate to ensure real-time and latency

requirements are met. Similarly, the control sequence unit is

responsible to make sure all the processing blocks work in

tandem and monitor the execution of the algorithms.

Failures in these blocks can lead to blind spots and complete

lack of visibility.

Fig 1: Surround View System Block Diagram

Algorithms can have varying levels of criticality depending

upon how their outputs are being consumed. In this system,

we assume the output of a detected pedestrian/vehicle are

used to provide information/warning to the driver and are not

influencing the vehicle operation. Hence they are assumed to

be the lowest safety components of the system. This leads to

a system with mixed criticality levels and imposes each level

to safely communicate with the other. The co-existence of

various safety levels is a major challenge in heterogeneous

multi-core systems as we need to ensure that the integrity

levels of higher ASIL components are not compromised

because of their interaction with the lower safety level

components[6][15][18][20].

In this paper, we discuss the proposed solution to the issue of
mixed safety levels in a heterogeneous environment in
section I and the implementation and results in section II.

I. PROPOSED SOLUTION

A) System Architecture and modules to implement

freedom from interference(FFI)

Fig 2: Enabling Safety

There are multiple focus areas to achieve a required safety
level in an automotive ECU. They can be classified as
follows:

 Fault Monitoring: Error checking and correcting (ECC),

parity, dual clock comparators (DCC), boot and runtime

diagnostics, and Cyclic Redundancy Checks (CRC) are

mainly used in this context on memory and

communication channels.

 Crash Proofing: Crash proofing in a safety critical

component is essential, such that when a component with

lower safety integrity crashes, the higher safety integrity

component would indicate a warning to check the failed

component but would still continue to function. This can

be implemented through Real-Time Interrupts (RTI) and

watchdog timers. The RTI is responsible for starting tasks

and keeping track of how much minimum and maximum

time it is supposed to take for completion. If the

scheduling constraint is violated, then generate an

interrupt

 System Specific Safety goals: In the SRV system, one key

requirement is to be able to detect if any one of the video

input channels is not frozen and showing the same frame

always. Here CRC checksums can be compared across

frames to make sure the same CRC is not getting received

for multiple consecutive frames.

 Isolation: ISO26262 mandates that in a system with

components of different levels of safety integrity, freedom

from interference (FFI) needs to be guaranteed [1]. FFI in

a system ensures that errors in a component do not

propagate to other components which would lead to the

violation of safety integrity or lead to a system break

down [16]. The higher ASIL components can be

safeguarded from lower safety level components through

memory and task isolation [17][19][21].

Memory isolation can be achieved by restricting the access to

specific memory locations. Firewalls are commonly used for

memory isolation wherein, access to specific memory

regions is restricted by using identifiers. Identifiers consist of

the CPU Index (master Id) and the mode in which the CPU is

operating. The DMA channels can have their own unique

indexes and could potentially inherit the mode of the CPU

from which the DMA is triggered. Memory protection units

and memory management units are commonly used memory

isolation hardware units which based on the CPU mode

provide different access permissions to different regions of

memory.

 Fig 3 describes such a multi-core automotive ECU where

general purpose cores, signal processing cores and DMAs

coexist to initiate memory requests to internal/external

memory and I/O peripherals. Each system master is capable

of running tasks with mixed criticality and the techniques to

achieve FFI ensure tasks within or across cores are isolated.

We deep dive into details regarding the FFI implementation

in further details in the following sections.

Fig 3: System block diagram to achieve Isolation

Isolation also requires components/tasks of different

criticality to communicate with one another in a way

that if either task crashes, the other continues operation

and can report failures gracefully. This mandates the

need for a non-locking IPC between tasks of mixed-

criticality.

B) IPC between AUTOSAR and non Autosar world

Inter-processor Communication (IPC) is essential for

communication in a heterogeneous environment. In a

mixed criticality system, the communication needs to be

deadlock free, mainly relying on the hardware to

transport the arguments. Efficient IPC requires non

shared memory between the sub-systems of different

SOC

Fault Monitoring

(ECC, CRC,

parity)

Isolation (FFI,

Firewalls)

System Safety

(Frame Freeze)

Crash proofing

(RTI)

integrity levels. Software imposed timeouts help in

ensuring that deadlocks do not occur

A typical scenario is illustrated in Fig 4. IPC between

components in the SRV system is performed via

mailboxes. Communication between the tasks uses a

queued mailbox-interrupt mechanism. The queued

mailbox-interrupt mechanism allows the software to

establish a communication channel between two

processes through a set of registers and associated

interrupt signals by sending and receiving messages

(mailboxes). Mailboxes allow many-to-many

interaction.

Both the sender and receiver components start by setting

up the individual core specific parameters (Step 1). The

Sender and receiver then synchronize to make sure both

are ready to transmit and receive messages (Step 2).

Based on the tasks, the different event handlers are

registered on either core (Step 3). Each component can

send multiple events (Step 4). The corresponding

recipient’s callback is invoked upon reception of a new

event (Step 5 & 6). A table is maintained to keep track

of the entire received request. The receiver can

acknowledge the apt request (Step 7). The sender

component also maintains a callback table and delivers

the message/payload to right callback upon receiving

acknowledgment interrupt (Step 8 & 9).

Fig 4: Mechanism for IPC

C) Freedom from Interference (Task and Memory

Isolation)

When mixed ASIL components co-exist in a system, it

is mandated by ISO26262 to have “Freedom From

Interference (FFI)” of lower ASIL component towards

higher ASIL component [1]. The freedom or non-

interference should be on below points [8]

a. Memory accesses

b. Timing behavior and execution order

c. Exchange of information

FFI for memory accesses in a mixed ASIL system is

about providing selective memory access restriction to

QM tasks so that it does not contaminate ASIL memory

[9][16]. This means:

d. QM tasks and ASIL tasks need to co-exist on

multiple CPUs sharing a common memory

e. ASIL tasks, therefore, can be provided R-W access

for all memory

f. QM tasks need read-access to ASIL regions as they

may share data with ASIL tasks

g. QM tasks should not be given write permission to

ASIL regions

h. All tasks will have R-W access to QM regions

The components in the SRV system can be allowed to

access different memory regions based on the

permissions assigned. These permissions are

recommended to be clearly defined based on the safety

integrity levels. The memory is divided into multiple

regions having different access restrictions. The access

is restricted based on a master ID and the CPU mode.

The CPU mode can either be supervisor or user mode.

Protection policies are implemented to raise exceptions

to avoid illegal memory accesses between different

safety integrity level memories.

Fig 5: Safety Partitions and Memory Mapping

Task isolation can be achieved by creating safety

partitions based on the task context. The commonly used

tasks can be shared between the safety partitions with

these common tasks running at the highest safety level

[17].

Fig 6: Task Switching

The key considerations, illustrated in Fig 6, to achieve

task isolation for multi-criticality tasks running on a

single CPU core are as follows. We assume the core is

executing an RTOS which helps schedule QM and ASIL

tasks on the same CPU core.

– Define memory regions in external memory using

firewalls

– Define memory regions in internal memories using

MPU/MMU.

– Firewalls and MPU are reconfigured to QM mode

in the following cases:

• QM tasks entry

• After RTOS API execution in QM task

– Firewalls are reconfigured to ASIL mode in the

following cases

• QM tasks exit

– MPU is reconfigured to ASIL mode in the

following cases

• QM tasks exit

• Before RTOS API execution in QM task

– Cache flush is executed in following scenarios

• QM tasks exit

– Cache flush is required for following cases

• Doing a switch between ASIL and QM mode

• Executing BIOS APIs

– System integrators can choose to:

• Ensure all ASIL tasks run consecutively

followed by all QM tasks running

consecutively to ensure minimal execution of

cache-flush APIs

• Ensure all RTOS data structures are in internal

memory – this avoids the need of cache-flush

when executing RTOS APIs

II. RESULTS

The proposed task isolation and safe IPC mechanisms were

implemented on Texas Instruments’ TDA2/3 family of

automotive devices. A typical 2D SRV setup on Texas

Instruments’ TDA2x is shown in Fig 7. The techniques for

functional safety such as memory and task partitioning and

FFI have been incorporated to achieve FFI in a mixed safety

integrity environment. In a typical application scenario, the

sequence of events is as follows:

1. The frames from the camera units are captured,

duplicated and synchronized on a general purpose

core (M4).

2. The algorithms for geometric alignment, synthesis

and photometric alignment are executed from the

DSP.

3. The synthesized outputs from the DSP is then

processed for display on the GPP core and

forwarded to the display.

 The frequency of operation and cache sizes for the GPP

(M4) and DSP cores are elaborated further in Table I. The

number of switches per second is calculated by multiplying

the number of frames per second and the number of

switches required per second. The latency for the context

switches, task switches and interrupt switches on the M4

and DSP are measured and recorded in Table I.

 Fig 7: Experiment Setup

TABLE I. SWITCHING OVERHEADS FOR TASKS BETWEEN DIFFERENT SAFTEY LEVELS

CPU Operation

Frequency

of

Operation

(MHz)

Cach

e Size

(KB)

Switch Per Sec

(# Switch per

frame * #Frames

per second)

Context

switch time

/ frame (ms)

Task

Switch

(ms)

Interrupt

Switch (ms)

M4

Capture &

Sync of frames 212 32
4 * 30 0.015

0.015 0.0072

Display 1 * 30 0.015

DSP

3 Algorithms:

Geometric

Align,

Photometric

Align &

Synthesis

600 256 3 * 1 * 30 0.366 0.003 0.004

The CPU and memory overheads after incorporating the

functional safety requirements have been measured for this

setup and are recorded in Table II. The results indicate that

after implementing the safety mechanisms, CPU load and

memory utilization increase marginally, while still

maintaining the real-time behavior required for the SRV

automotive system.

TABLE II. CPU AND MEMORY OVERHEADS FOR INCORPORATING

FUNCTIONAL SAFETY IN A 2D SRV AUTOMOTIVE SYSTEM

M4

CPU

Load

%

DSP

CPU

Load

%

Total Memory

Bandwidth

(MBps)

Non-

Safety
33.500 41.700 1320.000

Safety 33.506 41.737 1348.508

III. CONCLUSION

Functional safety in a heterogeneous system with mixed

ASIL/QM safety levels is a critical and complex issue.

Especially in autonomous driving systems, the safety goals

are even more challenging and are imperative to achieve. In

this paper, we have elaborated on techniques to implement

functional safety between components of different safety-

criticality. This has been achieved through FFI mechanisms

such as memory isolation, task partitioning and safe methods

to communicate through IPC. The main challenge is to

minimize the overheads incurred by implementing the safety

mechanisms so that the real-time behavior of the system is

not compromised, as a failure can even lead to loss of human

life. Finally, to ensure that the automotive system behaves

as required, monitoring and diagnostics should be

implemented.

ACKNOWLEDGMENT

The authors would like to thank Yashwant Dutt, Mihir

Mody, Sivaraj R, Kedar Chitnis, Shiju Sivasankaran, Brijesh

Jadav, Biju MG, Jayant Thakur, Ankur, Vivek Dhande,

Rishabh Garg and Prasad Jondhale from Texas Instruments,

Bangalore for their valuable inputs and review comments

which have given direction to the paper.

REFERENCES

[1] "ISO 26262-1:2011," 2011. [Online]. Available:

http://www.iso.org/iso/catalogue_detail?csnumber=43464.

[2] Urmson, "Autonomous driving in urban environments: Boss and the

urban challenge.," The DARPA Urban Challenge, no. Springer Berlin

Heidelberg, pp. 1-59, 2009.

[3] A. S. Puthon, F. Nashashibi and B. Bradai, "Improvement of

multisensor fusion in speed limit determination by quantifying

navigation reliability," 13th International IEEE Conference on

Intelligent Transportation Systems, Funchal, 2010, pp. 855-860.

[4] R. C. Luo and M. G. Kay, "Multisensor integration and fusion in

intelligent systems," in IEEE Transactions on Systems, Man, and

Cybernetics, vol. 19, no. 5, pp. 901-931, Sep/Oct 1989.

[5] T. I. Inc, "Advanced Driver Assistance (ADAS) Solutions Guide,

SLYY044A," 2015.

[6] Texas Instruments,"TI Gives Sight to Vision-Enabled Automotive

Technologies," [Online]. Available:

http://www.ti.com/lit/wp/spry250/spry250.pdf.

[7] R. Gulati, V. Easwaran, P. Karandikar, M. Mody and P. Shankar,

"Resolving ADAS imaging subsystem functional safety

quagmire," 2015 IEEE International Conference on Consumer

Electronics (ICCE), Las Vegas, NV, 2015, pp. 291-294.

[8] AUTOSAR,“Overview of Functional Safety Measures in AUTOSAR”

, [Online]. Available:

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf

[9] A. Goebel, R. Mader and O. Tripon, "Performance and Freedom

From Interference - a contradiction in embedded automotive multi-

core applications," ARCS 2017; 30th International Conference on

Architecture of Computing Systems, Vienna, Austria, 2017, pp. 1-9

[12] Vikram Vijayan, Sujith,et al,”Three Dimensional Rendering for

Surround View Using Predetermined Viewpoint Lookup Tables”,

Patent Available:

https://patents.google.com/patent/US20170195564A1

[13] Texas Instruments, “Surround view camera system for ADAS on TI’s

TDAx SoCs 2”, [Online]. Available:

http://www.ti.com/lit/wp/spry270a/spry270a.pdf

[14] M. Niklas, S. Voget, and J. Mottok, “Safety relevant development by

adaptation of standardized safety concepts in autosar 4.0,” Embedded

Real Time Systems Conference , Toulouse, February, 2012

[15] Glas, Benjamin ,et.al, " Automotive safety and security integration

challenges”, Automotive - Safety & Security 2014

[16] Haworth, David et al. “Freedom from Interference for AUTOSAR-

based ECUs: a partitioned AUTOSAR stack.” Automotive - Safety &

Security (2012).

[17] Ficek, Christoph and Nico Feiertag. “Applying the AUTOSAR timing

protection to build safe and efficient ISO 26262 mixed-criticality

systems.” (2011).

[18] S. Faucou, “Mixed criticality in multicore automotive embedded

systems,” Mixed Criticality on Multicore/Manycore Platforms, 2015.

[19] T. Piper, S. Winter, O. Schwahn, S. Bidarahalli and N. Suri,

"Mitigating Timing Error Propagation in Mixed-Criticality

Automotive Systems," 2015 IEEE 18th International Symposium on

Real-Time Distributed Computing, Auckland, 2015, pp. 102-109.

[20] G. Macher, A. Höller, E. Armengaud and C. Kreiner, "Automotive

embedded software: Migration challenges to multi-core computing

platforms," 2015 IEEE 13th International Conference on Industrial

Informatics (INDIN), Cambridge, 2015, pp. 1386-1393.

[21] F. Leitner-Fischer, S. Leue, and S. Liu, “Automated Freedom from

Interference Analysis for Automotive Software,” in CARS, 2016.

