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Abstract—Driverless cars are the next step in the evolution 

of the automotive industry. Advanced Driver Assistance 

Systems (ADAS) are the stepping stones to achieve and 

enhance the driving experience and more importantly safety in 

automotive systems. Safety standards such as ISO 26262 define 

Automotive Safety Integration Levels (ASIL) depending on the 

severity and probability of an error which may lead to 

loss/harm to life. Automotive electronic control units (ECUs) 

are made up of multi-core heterogeneous SoCs. Making all 

components of an automotive ECU  to the highest ASIL level is 

not feasible due to significant cost and effort. This paper looks 

at software and hardware methods to have mixed safety levels 

co-exist in a heterogeneous SoC environment targeting 

surround view ADAS system while incorporating AUTOSAR 

requirements. 
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INTRODUCTION  

Automotive embedded systems are safety critical systems 
wherein errors or failures could result in injury or loss of 
human life, loss or severe damage to equipment, or 
environmental harm. Functional safety relates to the correct 
operation of a system while preventing life-threatening 
hazards with safe management of likely errors and failures. 
This involves identifying safety functions and assessing the 
risks. ISO26262 is an international standard for functional 
safety in the automotive domain. ISO26262 defines different 
Automotive Safety Integrity Levels (ASIL) for classifying 
the risk. A system can be classified based on the failure rate 
and the effectiveness of failure detection. The integrity 
requirements range from Quality Managed (QM), ASIL A to 
ASIL D. A system classified as ASIL D, the highest integrity 
requirement, would be extremely robust in preventing the 
occurrence of failures which would cause life-threatening 
consequences. QM systems, on the other hand, do not dictate 
any safety requirements in accordance with ISO26262 
[1][15]. 

With autonomous vehicles gaining momentum, automotive 
systems gain complexity day by day. Heterogeneous multi-
core systems are deployed to achieve the specific processing 
requirements of such advanced signal processing 
applications [2-5]. This makes achieving functional safety in 
such systems even more challenging. The ideal scenario is to 
have all components at the highest safety integrity level. 
However, this is not feasible as it makes the system complex 
and incurs significant development costs. 

The automotive surround view (SRV) camera system is an 
automotive ADAS (Advanced Driver Assistance System) 
technology that’s rapidly gaining importance. It allows the 
driver to see a top to down view of the 360-degree 
surroundings of the vehicle. A typical SRV system normally 
comprises of four to six wide-angle (fish-eye lens) cameras 
mounted around the vehicle, each facing a different direction 

[6][7][13]. A composite view of the surroundings of the 
vehicle is synthesized from these inputs from the camera and 
shown to the driver in real-time during parking. In order to 
generate a precise image, many components are required 
such as capture unit, display unit, synthesis creation, 
geometric alignment and photometric alignment. 
Additionally, such systems are equipped with advanced 
algorithms for pedestrian and vehicle detection. These tasks 
are distributed over different cores in a SoC for optimal 
utilization and performance [13][21]. A typical surround 
view system is shown in Figure 1. 

The interaction with the vehicle CAN network is the highest 

critical task in such systems. This component monitors the 

execution of the rest of the system and notifies and contains 

system failures. Typically this component would be 

executing the AUTOSAR software stack. AUTOSAR 

(Automotive Open System Architecture) is a standard for the 

development of software for embedded devices, primarily 

created for the automotive domain. It specifies a software 

architecture which provides a common ground for building 

applications at a certain level of safety [8][16]. 

Capture and display units, on the other hand, need to detect 

sensor, display failures and need to operate at a fixed 

performance rate to ensure real-time and latency 

requirements are met. Similarly, the control sequence unit is 

responsible to make sure all the processing blocks work in 

tandem and monitor the execution of the algorithms. 

Failures in these blocks can lead to blind spots and complete 

lack of visibility.  

 

 

Fig 1: Surround View System Block Diagram  

Algorithms can have varying levels of criticality depending 

upon how their outputs are being consumed. In this system, 

we assume the output of a detected pedestrian/vehicle are 

used to provide information/warning to the driver and are not 

influencing the vehicle operation. Hence they are assumed to 

 



be the lowest safety components of the system. This leads to 

a system with mixed criticality levels and imposes each level 

to safely communicate with the other. The co-existence of 

various safety levels is a major challenge in heterogeneous 

multi-core systems as we need to ensure that the integrity 

levels of higher ASIL components are not compromised 

because of their interaction with the lower safety level 

components[6][15][18][20]. 

 

In this paper, we discuss the proposed solution to the issue of 
mixed safety levels in a heterogeneous environment in 
section I and the implementation and results in section II. 

I. PROPOSED SOLUTION 

A) System Architecture and modules to implement 

freedom from interference(FFI) 

 

 
Fig 2: Enabling Safety 

There are multiple focus areas to achieve a required safety 
level in an automotive ECU. They can be classified as 
follows: 

 Fault Monitoring: Error checking and correcting (ECC), 

parity, dual clock comparators (DCC), boot and runtime 

diagnostics, and Cyclic Redundancy Checks (CRC) are 

mainly used in this context on memory and 

communication channels. 

 Crash Proofing: Crash proofing in a safety critical 

component is essential, such that when a component with 

lower safety integrity crashes, the higher safety integrity 

component would indicate a warning to check the failed 

component but would still continue to function. This can 

be implemented through Real-Time Interrupts (RTI) and 

watchdog timers. The RTI is responsible for starting tasks 

and keeping track of how much minimum and maximum 

time it is supposed to take for completion. If the 

scheduling constraint is violated, then generate an 

interrupt 

 System Specific Safety goals: In the SRV system, one key 

requirement is to be able to detect if any one of the video 

input channels is not frozen and showing the same frame 

always. Here CRC checksums can be compared across 

frames to make sure the same CRC is not getting received 

for multiple consecutive frames. 

 Isolation: ISO26262 mandates that in a system with 

components of different levels of safety integrity, freedom 

from interference (FFI) needs to be guaranteed [1]. FFI in 

a system ensures that errors in a component do not 

propagate to other components which would lead to the 

violation of safety integrity or lead to a system break 

down [16]. The higher ASIL components can be 

safeguarded from lower safety level components through 

memory and task isolation [17][19][21].  

Memory isolation can be achieved by restricting the access to 

specific memory locations. Firewalls are commonly used for 

memory isolation wherein, access to specific memory 

regions is restricted by using identifiers. Identifiers consist of 

the CPU Index (master Id) and the mode in which the CPU is 

operating. The DMA channels can have their own unique 

indexes and could potentially inherit the mode of the CPU 

from which the DMA is triggered. Memory protection units 

and memory management units are commonly used memory 

isolation hardware units which based on the CPU mode 

provide different access permissions to different regions of 

memory. 

  Fig 3 describes such a multi-core automotive ECU where 

general purpose cores, signal processing cores and DMAs 

coexist to initiate memory requests to internal/external 

memory and I/O peripherals. Each system master is capable 

of running tasks with mixed criticality and the techniques to 

achieve FFI ensure tasks within or across cores are isolated.  

We deep dive into details regarding the FFI implementation 

in further details in the following sections. 

 

 
Fig 3: System block diagram to achieve Isolation 

Isolation also requires components/tasks of different 

criticality to communicate with one another in a way 

that if either task crashes, the other continues operation 

and can report failures gracefully. This mandates the 

need for a non-locking IPC between tasks of mixed-

criticality. 

B) IPC between AUTOSAR and non Autosar world 

Inter-processor Communication (IPC) is essential for 

communication in a heterogeneous environment. In a 

mixed criticality system, the communication needs to be 

deadlock free, mainly relying on the hardware to 

transport the arguments. Efficient IPC requires non 

shared memory between the sub-systems of different 
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integrity levels. Software imposed timeouts help in 

ensuring that deadlocks do not occur 

A typical scenario is illustrated in Fig 4. IPC between 

components in the SRV system is performed via 

mailboxes. Communication between the tasks uses a 

queued mailbox-interrupt mechanism. The queued 

mailbox-interrupt mechanism allows the software to 

establish a communication channel between two 

processes through a set of registers and associated 

interrupt signals by sending and receiving messages 

(mailboxes). Mailboxes allow many-to-many 

interaction.  

Both the sender and receiver components start by setting 

up the individual core specific parameters (Step 1). The 

Sender and receiver then synchronize to make sure both 

are ready to transmit and receive messages (Step 2). 

Based on the tasks, the different event handlers are 

registered on either core (Step 3). Each component can 

send multiple events (Step 4). The corresponding 

recipient’s callback is invoked upon reception of a new 

event (Step 5 & 6). A table is maintained to keep track 

of the entire received request. The receiver can 

acknowledge the apt request (Step 7). The sender 

component also maintains a callback table and delivers 

the message/payload to right callback upon receiving 

acknowledgment interrupt (Step 8 & 9).  

 

 
Fig 4: Mechanism for IPC 

C) Freedom from Interference (Task and Memory 

Isolation) 

When mixed ASIL components co-exist in a system, it 

is mandated by ISO26262 to have “Freedom From 

Interference (FFI)” of lower ASIL component towards 

higher ASIL component [1]. The freedom or non-

interference should be on below points [8] 

a. Memory accesses 

b. Timing behavior and execution order 

c. Exchange of information 

FFI for memory accesses in a mixed ASIL system is 

about providing selective memory access restriction to 

QM tasks so that it does not contaminate ASIL memory 

[9][16]. This means: 

d. QM tasks and ASIL tasks need to co-exist on 

multiple CPUs sharing a common memory 

e. ASIL tasks, therefore, can be provided R-W access 

for all memory 

f. QM tasks need read-access to ASIL regions as they 

may share data with ASIL tasks 

g. QM tasks should not be given write permission to 

ASIL regions 

h. All tasks will have R-W access to QM regions 

 

The components in the SRV system can be allowed to 

access different memory regions based on the 

permissions assigned. These permissions are 

recommended to be clearly defined based on the safety 

integrity levels. The memory is divided into multiple 

regions having different access restrictions. The access 

is restricted based on a master ID and the CPU mode. 

The CPU mode can either be supervisor or user mode. 

Protection policies are implemented to raise exceptions 

to avoid illegal memory accesses between different 

safety integrity level memories.  

 

 
Fig 5: Safety Partitions and Memory Mapping  

 

Task isolation can be achieved by creating safety 

partitions based on the task context. The commonly used 

tasks can be shared between the safety partitions with 

these common tasks running at the highest safety level 

[17]. 

 

 
Fig 6: Task Switching  

 

 

 



The key considerations, illustrated in Fig 6, to achieve 

task isolation for multi-criticality tasks running on a 

single CPU core are as follows. We assume the core is 

executing an RTOS which helps schedule QM and ASIL 

tasks on the same CPU core. 

– Define memory regions in external memory using 

firewalls 

– Define memory regions in internal memories using 

MPU/MMU. 

– Firewalls and MPU are reconfigured to QM mode 

in the following cases: 

• QM tasks entry 

• After RTOS API execution in QM task 

– Firewalls are reconfigured to ASIL mode in the 

following cases 

• QM tasks exit 

– MPU is reconfigured to ASIL mode in the 

following cases 

• QM tasks exit 

• Before RTOS API execution in QM task 

– Cache flush is executed in following scenarios 

• QM tasks exit 

– Cache flush is required for following cases 

• Doing a switch between ASIL and QM mode 

• Executing BIOS APIs 

– System integrators can choose to: 

• Ensure all ASIL tasks run consecutively 

followed by all QM tasks running 

consecutively to ensure minimal execution of 

cache-flush APIs 

• Ensure all RTOS data structures are in internal 

memory – this avoids the need of cache-flush 

when executing RTOS APIs 

 

II. RESULTS 

The proposed task isolation and safe IPC mechanisms were 

implemented on Texas Instruments’ TDA2/3 family of 

automotive devices. A typical 2D SRV setup on Texas 

Instruments’ TDA2x is shown in Fig 7. The techniques for 

functional safety such as memory and task partitioning and 

FFI have been incorporated to achieve FFI in a mixed safety 

integrity environment. In a typical application scenario, the 

sequence of events is as follows: 

1. The frames from the camera units are captured, 

duplicated and synchronized on a general purpose 

core (M4). 

2. The algorithms for geometric alignment, synthesis 

and photometric alignment are executed from the 

DSP. 

3. The synthesized outputs from the DSP is then 

processed for display on the GPP core and 

forwarded to the display. 

 

 The frequency of operation and cache sizes for the GPP 

(M4) and DSP cores are elaborated further in Table I. The 

number of switches per second is calculated by multiplying 

the number of frames per second and the number of 

switches required per second. The latency for the context 

switches, task switches and interrupt switches on the M4 

and DSP are measured and recorded in Table I.  

  Fig 7: Experiment Setup 

 

TABLE I. SWITCHING OVERHEADS FOR TASKS BETWEEN DIFFERENT SAFTEY LEVELS 

CPU Operation 

Frequency 

of 

Operation 

(MHz) 

Cach

e Size 

(KB) 

Switch Per Sec              

(# Switch per 

frame * #Frames 

per second) 

Context 

switch time 

/ frame (ms) 

Task 

Switch 

(ms) 

Interrupt 

Switch  (ms) 

M4 

Capture & 

Sync of frames 212 32 
4 * 30 0.015 

0.015 0.0072 

Display 1 * 30 0.015 

DSP 

3 Algorithms: 

Geometric 

Align, 

Photometric 

Align & 

Synthesis 

600 256 3 * 1 * 30 0.366 0.003 0.004 

 
 



The CPU and memory overheads after incorporating the 

functional safety requirements have been measured for this 

setup and are recorded in Table II. The results indicate that 

after implementing the safety mechanisms, CPU load and 

memory utilization increase marginally, while still 

maintaining the real-time behavior required for the SRV 

automotive system.  

TABLE II. CPU AND MEMORY OVERHEADS FOR INCORPORATING 

FUNCTIONAL SAFETY IN A 2D SRV AUTOMOTIVE SYSTEM 

  

 

M4 

CPU 

Load 

% 

DSP 

CPU 

Load 

% 

Total Memory 

Bandwidth 

(MBps) 

Non-

Safety 
33.500 41.700 1320.000 

Safety 33.506 41.737 1348.508 

 

 

III. CONCLUSION 

Functional safety in a heterogeneous system with mixed 

ASIL/QM safety levels is a critical and complex issue. 

Especially in autonomous driving systems, the safety goals 

are even more challenging and are imperative to achieve. In 

this paper, we have elaborated on techniques to implement 

functional safety between components of different safety-

criticality. This has been achieved through FFI mechanisms 

such as memory isolation, task partitioning and safe methods 

to communicate through IPC. The main challenge is to 

minimize the overheads incurred by implementing the safety 

mechanisms so that the real-time behavior of the system is 

not compromised, as a failure can even lead to loss of human 

life. Finally, to ensure that the automotive system behaves 

as required, monitoring and diagnostics should be 

implemented.   
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