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Abstract 

Periodic testing of electronic circuits in safety critical systems 

is becoming increasingly important due to the increasing safety 

and reliability requirements. Functional safety standards 

recommend targeted coverage goals to quantify the safety level for 

a device. Achieving these coverage goals using the traditional 

software based techniques is not practical. Adding redundancy to 

enable safety will result in significant hardware overhead. In this 

context, providing low cost (lesser area overhead, lesser impact on 

application MIPS, etc.) on-chip solutions to address field-test 

requirements is becoming increasingly important. These tests 

should be able to run in minimal time in idle slots of the 

application without affecting the application throughput. We 

should also ensure that there is no significant area overhead 

incurred in supporting these solutions on-chip. In this paper, we 

discuss various Design for Test techniques to enable application 

time self-test of various critical components of an SOC. 
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I. INTRODUCTION  

Semiconductors usage in different applications is 
increasing rapidly. More importantly they are being used in 
many safety critical applications like automobile, industrial 
automation, health care devices etc. While at one end, 
semiconductors offer newer functionality and ease of use, 
they also pose an increased risk of failures. Consider the 
example of an automobile. Semiconductor devices are used 
to control multiple functionalities like braking, steering 
control, airbags, etc. A failure in one of the semiconductor 
component used to implement these critical functionalities 
can be fatal.  To ensure the correctness of the application, it 
is required to periodically check the functionality of 
semiconductors used in safety critical applications. 

Many functional safety standards like ISO26262 [1] and 
IEC61508 [2] have come up with guidelines to ensure that 
the systems are designed to meet the required safety level. 
Integrated Circuits (IC) play an important role in ensuring 
safety of the application. The device and development costs 
of “adding” safety on chip can be pretty high, calling for new 
solutions to be developed. While software based techniques 
can be used, it involves significant effort to develop these 
tests and quantify the coverage as required by the safety 
standards. Simple on-chip solutions when planned ahead in 
the design cycle can save significant effort / cost in enabling 
safety. 

While it may call for adding new logic on-chip to enable 
field-testing of the device, it is important to ensure that the 
area and cost overhead due to the additional logic is minimal. 
To enable this, we should reuse the logic deployed for 
manufacturing test to enable field self-test. In this paper, we 
propose methods to reuse the on-chip Design for Test 
modules developed for manufacturing test of the device to be 
used for field-test. The challenges associated with supporting 

field-test and the design techniques to overcome them are 
also discussed in this paper. 

This paper is organized into seven sections. Section 2 
provides the background on need for tests in application and 
prior approaches used to support these tests. Section 3 
discusses the safety concepts to which a device should 
adhere and the metrics to quantify the safety level of a 
device. Section 4 discusses the challenges and techniques to 
test digital logic at power-up and run-time. Sections 5 and 6 
discuss the design techniques to test memories and analog in 
application. Section 7 concludes the paper. 

II. BACKGROUND AND RELATED WORK 

Integrated circuits used in safety critical applications can 
fail due to various reasons like ionizing radiation, ageing, 
excess temperature or voltage conditions etc. We use a 
representative example (described in [3]) to illustrate the 
impact of IC failure on the application.  

A. Application case study 

Consider the example control IC (Digital Controller) 
used in traction control system of an electric vehicle. The 
control IC receives torque/speed set-point command from 
supervisor IC based on information from input functions like 
accelerator, brake pedal, etc. The control IC senses torque by 
measuring the motor phase current. The processing element 
in the control IC will determine the system error by 
comparing the set-point torque received from the supervisor 
IC with the sensed torque and execute control algorithm to 
make this error zero. The response will be conveyed to the 
motor as change of applied power, which is done by 
controlling the power-stage using pulse width modulation 
techniques as indicated in Figure 1. The closed loop 
operation happens periodically based on some system events. 
Once the set of operation completes, the Control IC will wait 
(called as the idle slot) for a system event to process the next 
set of information.  

 

Figure 1: Closed loop control system 

 
Impact of a fault in the control IC at the application level 

can be understood by examining the impact of a fault in each 
of the modules in that chip. 
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1) A fault in the sensor module (CAP) [4] can lead to 

incorrect sensing (higher/lower than actual) of speed. 

Incorrectly sensed speed input to the control algorithm 

can result in incorrect processing which can in turn lead 

to inadvertent acceleration or deceleration 

2)   A fault in the processing element (CPU) will cause 

incorrect processing during control algorithm execution 

causing inadvertent acceleration or deceleration. 

3) A fault in the actuation module (PWM) [5] output can 

cause the output to stick to either zero or one, again 

resulting in inadvertent acceleration or deceleration.  

As illustrated in the above case study, it is important to 
ensure correctness of each of the components of an IC, to get 
a desired functionality from the IC used in a safety critical 
application. 

B. Prior Work 

A variety of techniques are available to check for the 
correctness of a device. A commonly used technique is to 
test using software [6]. A set of software tests is created, to 
check for critical functionality of the device. These software 
tests are run periodically (at power-up and in idle slots) to 
screen for any defects in the device. However, these tests are 
application based and hence every new application requires a 
new test. This involves significant effort in generating 
optimized tests to reduce the test time and memory 
requirements. Quantifying the coverage attained with 
software tests through functional fault simulation is a very 
laborious process. 

Design for Test (DFT) based structural tests are proposed 
for the digital logic. These tests overcome the limitations of 
software based tests as they are independent of the 
functionality. The effort involved in generating these tests is 
minimal and quantification of tests coverage can be done 
easily. Coverage and test time with software and DFT based 
structural tests for an IP with 3000 flip-flops is shown in 
TABLE 1. 

TABLE 1. SOFTWARE TEST VS STRUCTURAL TEST 
Self-test 

type 
Details   Coverage  

Test 
cycles   

Test time 
(us) 

Software 

(S/W) 

Software test 

suite 
43.87% 21625 216 

DFT based 
structural 
tests 

Detecting all 
faults detected by 

S/W self-test  

43.87% 10010 100 

Full Hardware 
test suite  

97.77% 21625 216 

 

Alternatively hardware redundancy [7] is used for some 
modules. In this method, result from redundant module is 
compared with result from the actual module to determine 
the correctness. However, this comes with an area overhead 
and it is practically not possible to have redundancy for all 
modules in a design. 

The techniques to choose the right DFT solution and the 

tradeoffs associated are discussed in following sections. For 

modules like analog and memories, where DFT based 

structural tests are not possible, alternative tests are 

proposed. 

III. FOUNDATIONAL SAFETY GUIDELINES AND CONCEPTS 

Various functional safety standards have been established 
over the years to address hazards caused by malfunctioning 

behavior of electronic devices in safety applications. Of 
these, ISO 26262 functional safety standard addresses the 
requirements from automotive standpoint. The standard 
defines requirements at various stages of system life cycle 
including development.  Various techniques should be 
incorporated in design stage to enable an SOC to comply 
with the requirements specified in ISO26262 standard.  

As discussed in flowing paragraphs (taken from [8]) 
causes of application failure are classified into (i) Systematic 
failures and (ii) Random failures. Detailed classification is 
shown in Figure 2.  

 

Figure 2. Failure classification as per ISO26262 

 
 Systematic failures typically arise due to design quality 

issues (e.g. bugs in the design), manufacturing issues (e.g. 
faults escaping due to insufficient manufacturing test), non-
adherence to operating conditions (e.g. device operating in 
conditions outside the specified temperature, voltage, 
humidity conditions), etc.  These failures are repeatable in 
nature and can be controlled to a large extent by following a 
regimented approach (process) during the product life cycle. 

Random failures occurring in a device can be due to 
permanent faults or transient faults. Permanent faults are 
caused by ageing phenomena like Negative Bias 
Temperature Instability (NBTI) and Hot Carrier Injection 
(HCI) [10]. Transient faults are caused due to alpha particle 
and neutron strikes. A permanent fault, as the name 
indicates, causes permanent damage to the chip and will 
force the chip to be replaced in most of the cases. Random 
faults can be further classified into single point fault, residual 
fault, multiple point fault and safe fault [9]. The ISO26262 
definitions for these faults are as follows: A single point 
fault is a fault which is not covered by any safety mechanism 
and whose failure can lead to violation of the system safety 
goal. Residual faults refer to a subset of faults that can lead 
to violation of a safety goal, where this subset of faults is not 
covered by the existing safety mechanisms. A multi-point 
fault is a fault which standalone cannot cause the violation 
of safety goal, but the same fault in combination with other 
independent faults can lead to violation of safety goal. A 
fault whose occurrence will not significantly increase the 
probability of violation of a safety goal is called a safe fault. 

Quantitative analysis for a circuit failure mode provides 
an objective means to ascertain the safety worthiness of a 
given circuit. These metrics can be used to (i) objectively 
assess safety effectiveness of the design to cope with the 
random hardware failures, (ii) guidance towards making 
enhancements for safety in the design based on afore-
identified effectiveness. These are measured in terms of 



Single Point Fault Metric (SPFM) and Latent Fault Metric 
(LFM). 

SPFM   = 1- 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠 + 𝑆𝑖𝑛𝑔𝑙𝑒 𝑃𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑓𝑒𝑡𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠
 

LFM   = 1- 
𝑈𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑃𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑠

𝑆𝑎𝑓𝑒𝑡𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠 −𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠
 

In this paper, we focus on techniques to provide random 
fault coverage. 

IV. DIGITAL LOGIC TEST 

Digital logic on an SOC includes the CPUs, digital 
peripherals, etc. Scan based DFT techniques are used for 
manufacturing test of this logic. The same on-chip 
infrastructure can be utilized to screen for defects in field as 
well.   

A. Power-on self-test 

At power-up, pre-operational checks need to be 
performed to ensure that CPU can boot-up correctly and 
perform the required operations. Full chip logic self-test can 
be used for addressing the latent fault coverage requirements 
of ISO26262 applications with key on-off hours <24 hours. 
Start-up self-test directly impacts the boot time of the 
application and we had a requirement from the end 
application to reach  90% coverage within 2ms. In addition, 
we wanted to reduce the area to be minimum so as to reduce 
the overall cost incurred due to the safety solution.   

We used LBIST compression solution from Cadence [10] 

for power-on self-test to help in reducing the on-chip 

memory required to store the patterns.  

 

Figure 3. LBIST Architecture 

The architecture for LBIST is shown in Figure 3. A 

golden seed is loaded into pseudo-random pattern generator 

(PRPG), which generates input patterns applied to scan 

channels. A multiple-input signature register (MISR) is used 

to capture the response from scan channels. The coverage vs 

patterns count for a regular LBIST is as shown in Figure 

4Error! Reference source not found.. As can be seen from 

the graph, the test coverage with a given seed tapers-off at a 

certain point, leading to huge pattern count for a minimal 

increment in coverage. Higher pattern count translates to 

higher test time at power-up, thereby impacting the boot 

time. Also, 90% coverage cannot be achieved with single 

golden seed loaded in PRPG.  

To achieve the coverage goal of 90% with less numbers 

of patterns, experiments have been done by inserting test 

points on-chip. Test points increase controllability and 

observability for the faults that cannot be easily detected by 

ATPG tool, thereby improving the coverage. The number 

test points inserted is increased from 100 to 7000. With 100 

test points 90% coverage could not be achieved. With 2500 

test points, test coverage of 90% was achieved with 10240 

patterns. As can be seen in Figure 5, pattern count for desired 

coverage decreases with addition of test points. With 7000 

test points, 90% coverage was attained with just 3200 

patterns.  

 

Figure 4. Coverage vs Pattern count with LBIST 

 

 

Figure 5. Pattern count decrease with test points 

 

However, though the test time decreases, increased 

number of test points result in area overhead. So, trade-off 

has to be considered to arrive at the final solution. We 

achieved  the test time target of <2 ms (10000 patterns 

running at 100MHz frequency with chain length of 185) and 

minimal area of 0.2mm
2 

(combination of LBIST code area 

and test points) with 2500 test points. 

B. Run-time Build-In Self-test for CPU 

CPU is a critical component of SOC and it needs to be 
checked at regular intervals during the application. We used 
Run-time Build-In Self-Test (RT-BIST)[11] capability to 
perform testing of the CPU logic during application. This 
will help address the SPFM requirements of ISO26262. 
Various challenges to support run-time test of a CPU and 
design techniques to overcome them are discussed below. 

1. Easier integration with application environment 

RT-BIST run is triggered in the idle slots of the CPU. 
The application and test slots are interleaved as shown in 
Figure 6. To make use of the smaller idle slots of CPU, the 

overall test should be split into multiple small intervals.  

 Figure 6. Interleaving Application and Test slots 

  A1    T1        A2 T2   A3  T3 A4 

Normal application slot Test application slot 



The compression architecture should be chosen such that 
the complete test for full coverage can be split into multiple 
smaller test intervals. Each pattern should be a separate 
entity to provide interruptible capability after every pattern 
run. OPMSR compression architecture from Cadence [12] is 
chosen in which each input pattern is a separate entity. Hence 
the test slot duration can be as small as one pattern 
application time, which is twice the chain length. OPMISR 
compression architecture is shown in Figure 7. The number 
of internal stumps is increased to reduce the chain length. We 
designed to support a chain length 20, so that test time for 
one pattern execution (shift-in, capture, shift-out along with 
other state-machine overheads) is 50 cycles. This ensures 
that even small idle periods in application environment can 
be used for triggering RT-BIST operation. Also, the 
intermediate states (context and result) of RT-BIST should 
be preserved between intervals so that the BIST operation 
can be resumed after it is interrupted. This is ensured by 
shifting in the last shift data of the previous test slot, when 
RT-BIST is triggered in next test slot. The result is stored in 
MISR (Multiple Input Signature Register) and is 
accumulated across tests. Design should take care that 
signature is not disturbed when we get back to application. 

       

 

       

 
2. Isolation of BIST logic 

Any activity in the CPU during the RT-BIST run should 

not disturb the peripherals connected to it. During BIST,  

random test data is shifted into the scan chains, and CPU 

outputs change every cycle. The outputs can assume invalid 

state and may cause spurious device operation, if they 

propagate to the peripherals connected to the CPU. Similarly, 

the inputs to the CPU may vary during test causing invalid 

values to be captured and can cause test to fail. To avoid 

these, the CPU is completely isolated during the execution of 

RT-BIST. 

3. Response time to events should be low 

System performance should not be impacted because of 
test. Any external interrupts to the CPU during the RT-BIST 
operation should not be lost. In case of interrupts, RT-BIST 
operation should be interrupted as early as possible and 
interrupts occurring during RT-BIST run should be 
addressed with minimum interrupt service latency so that the 
system performance is not impacted. In our approach, the 
amount of time for which interrupts can wait is made 
programmable to the user. We have built a mechanism inside 
BIST controller to log any interrupts to the CPU during RT-
BIST operation as shown in Figure 8. This ensures that no 
interrupts are lost during RT-BIST operation when the CPU 
is not able to service those interrupts. 

 

 

 
4. Achieving minimal on-chip memory and test time 

The tests should give reasonable amount of confidence 
about the correctness of the system. This can be obtained by 
attaining high fault / defect coverage, e.g. 99%+ for stuck-at 
fault model. The pattern count inflates as the coverage 
reaches near 99%. Also, not all application will require the 
very high covered offered by RT-BIST. The BIST operation 
can be programmed to run so as to obtain a desired coverage. 
As shown in Table 2, there is a 3x pattern count difference 
between achieving 95% and 99% test coverages.  Our 
architecture supports user configurable targeted coverage to 
reduce the total test time. At start-up if a complete check has 
to be done, 99% option can be targeted. On the other hand, if 
the test has to be run on few modules very frequently in less 
time, then 95% option can be chosen, where critical portions 
of design will be covered more frequently. 

TABLE 2. COVERAGE VS TEST CYCLES 
Sl. No Structural coverage on total core 

faults 
Test cycles 

1 95% 12350 

2 99.4% 37180 

 
5. Quick response to failure 

The failure information should be provided to the system 
in minimal time so that the error propagation to other parts of 
the system is contained. In typical BIST operations, the 
computed signature is compared against golden signature at 
the end of the test to certify that the device is functioning 
correctly. However, this is not recommended for field test 
and the failure has to be intimated as soon as possible. RT-
BIST architecture supports comparison of the computed 
signature with the golden signature after every few patterns 
to reduce the error detection latency. The number of patterns 
after which a comparison is done is configurable. It must be 
remembered that targeting aggressive reduction in error 
detection latency directly impacts the pattern memory size. 

6. Power during test 

Shift-in and shift-out of the test data using the system 
clock at its full-speed can cause IR drop issues because of 
high toggling activity during test. To address this we have an 
option to use a divided clock to reduce the shift frequency 
while using the high frequency clock for capture, to ensure 
that the at-speed faults are detected. 

 
 

 

 

Re-issue 

interrupts 
 

0 

1 

Interrupt 
logging 

unit 

     
     

CPU 
System 

Interrupt 
Controller 

    

Interrupts 

     

     BIST 

Controller 

Figure 7. OPMISR Compression Architecture 

Figure 8. Interrupt logging unit 



V. MEMORY TEST 

 Memories (SRAM and ROM) should be tested in field to 
detect both permanent and transient faults. Test of memories 
at start-up can be used as an effective method for providing 
latent fault coverage requirements for the memories. Using a 
CPU to test all memories sequentially consumes significant 
amount of time and adds to start-up time. There are instances 
where memories inside peripherals are not directly accessible 
by CPU and hence cannot be tested in field if CPU based 
tests are used. 

 For manufacturing test of memories, Programmable 
memory BIST (PBIST) [13] is used. We have used the same 
infrastructure to enable testing of memories in field. PBIST 
controller consists of a small processing unit with an 
instruction set targeted specifically towards testing of 
memories. PBIST helps to have access to all the device 
SRAM and ROM instances. PBIST interface to memories is 
shown in Figure 9.   

 

Figure 9. PBIST Interface to memories 
 

A dedicated on-chip ROM is used for storing the 
instruction codes, which are then loaded into the PBIST 
controller. The memory BIST controller can be configured to 
do complete memory test through the ROM, hereby enabling 
memory test in the customer's application. Using PBIST 
controller, memories of the same type can be grouped 
together and tested in parallel. This allows for significant test 
time reduction for power up self-test. As shown in TABLE 3, 
by using PBIST to test memories in parallel, test time for 
testing all memories at start-up, reduced by 5x on a design 
with 16 memory instances. 

TABLE 3.CYCLES FOR MEMORY TEST WITH PBIST AND CPU 
Memory  Number of  

memories 
tested 
together 

Address 
locations 

Test cycles 

PBIST CPU TEST 

Mem1 4 4096 53248 276889.6 

Mem2 8 1024 13312 138444.8 

Mem3 2 256 3328 8652.8 

Mem4 2 512 6656 17305.6 

Total cycles for testing all memories at 
start-up 76544 441292.8 

 

However, enabling multiple memories in parallel can 
cause increased power consumption. Analysis has been done 
to determine the number of memories that can be enabled in 
parallel to contain the power during test within spec limits. 

Interval based PBIST execution can also be used to meet 
the permanent fault coverage requirements of memories. 
Typically, ECC / Parity mechanism is used as the primary 
diagnostic for memories. However, ECC and Parity safety 
mechanisms do not provide coverage of the address decoder 
faults. PBIST based memory tests can be used to augment 
the coverage provided by primary diagnostic mechanisms.  

FTTI is the time duration within which any fault in the 
chip need to be detected. 10ms is used as the typical FTTI 
value for many automotive applications like power steering, 
braking, etc. The tests for all the memories need to be 
completed within this duration. However, with just PBIST 
this may not be practical at times. Hence, we have 
implemented a background memory checking engine [14] 
which can perform the test without consuming bandwidth 
from PBIST and CPU. As shown in Figure 10, the 
background memory checking engine snoops for idle cycles 
and perform CRC check of Non Volatile Memory and static 
SRAM contents (e.g. look-up tables, code copied from Flash, 
etc.). This feature enables a zero overhead memory test 
capability with minimal hardware addition.  

 

Figure 10. BRCRC implementation 

VI. ANALOG TEST 

Our SOCs typically consist of many on-chip analog IPs 
like Voltage regulators (VREG), Oscillators, ADCs, DACs, 
and Programmable Gain Amplifiers (PGA) etc. For a reliable 
SOC operation, it is critical to ensure that these analog IPs 
are functionally well.  

During production test, oscillators and PLLs need to be 
trimmed to set their clock outputs to desired frequency range. 
To enable these tests, an on-chip Dual Clock Comparator 
(DCC) module is supported, which measures the frequency 
of a selectable clock source, using the input clock as a 
reference. Two independent counter blocks count clock 
pulses from each clock source. The clocks decrement 
counters in order to compare their relative frequencies. The 
same infrastructure can be utilized to determine the accuracy 
of a clock signal during the execution of an application. 
Accurate clock frequency is critical for correct functioning of 
the device and any change in frequency should be 
immediately detected. Using DCC, a 2% drift from the 
expected frequency in a clock as required by the functional 
safety requirements, can be detected within few micro-
seconds of time.  

In the presence of an on-chip ADC, voltage outputs from 
circuits like DACs and VREG can be measured on-chip by 
looping them back to the ADC as shown in Figure 11. This 
mechanism can be used during application to check voltage 
outputs from critical components like VREG and bandgaps.  
At power-up, voltage outputs from critical components like 
VREG, bandgaps are looped back to ADC and measured to 
ascertain that they are within the permissible limits. Software 
routines are developed to trigger these tests by the CPU at 

SRAM/ROM

BGCRC Module

Existing functional/debug access

CRC READ REQ

SRAM/ROM 
Wrapper 

Arbitration

BGCRC fetch request will be granted if 
there are no pending functional accesses



power-up. Loop back tests are used for providing SPFM 
permanent fault coverage and LFM coverage.   

 

Figure 11. On-chip ADC and DAC loopback 

VII. CONCLUSION 

We have described a set of DFT techniques which can be 
used to enable functional safety for integrated circuits. We 
described how the test coverage and start-up time goal of 
90% and 2ms respectively for start-up self-test was achieved. 
We demonstrated the techniques to achieve shorter test 
interval of 50 cycles for run-time logic self-test. Techniques 
to address test power and handling of critical interrupts to 
CPU during field test are also discussed. Test time for 
memories in field has been reduced 5x by enabling testing of 
memories in parallel. On-chip techniques like DCC and 
analog loopback to ADC are described to enable test of 
analog modules. The techniques described are generic and 
are applicable to a wide range of SOCs targeted for safety 
critical applications. 
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