
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Design for Test Techniques to Enable Automotive

Functional Safety

Swathi G, Prasanth V, Maheedhar Jalasutram

 Texas Instruments.

swathig@ti.com, prasanth.v@ti.com, maheedhar@ti.com

Abstract

Periodic testing of electronic circuits in safety critical systems

is becoming increasingly important due to the increasing safety

and reliability requirements. Functional safety standards

recommend targeted coverage goals to quantify the safety level for

a device. Achieving these coverage goals using the traditional

software based techniques is not practical. Adding redundancy to

enable safety will result in significant hardware overhead. In this

context, providing low cost (lesser area overhead, lesser impact on

application MIPS, etc.) on-chip solutions to address field-test

requirements is becoming increasingly important. These tests

should be able to run in minimal time in idle slots of the

application without affecting the application throughput. We

should also ensure that there is no significant area overhead

incurred in supporting these solutions on-chip. In this paper, we

discuss various Design for Test techniques to enable application

time self-test of various critical components of an SOC.

Keywords: Self-test, Functional Safety, Design for Test

I. INTRODUCTION

Semiconductors usage in different applications is
increasing rapidly. More importantly they are being used in
many safety critical applications like automobile, industrial
automation, health care devices etc. While at one end,
semiconductors offer newer functionality and ease of use,
they also pose an increased risk of failures. Consider the
example of an automobile. Semiconductor devices are used
to control multiple functionalities like braking, steering
control, airbags, etc. A failure in one of the semiconductor
component used to implement these critical functionalities
can be fatal. To ensure the correctness of the application, it
is required to periodically check the functionality of
semiconductors used in safety critical applications.

Many functional safety standards like ISO26262 [1] and
IEC61508 [2] have come up with guidelines to ensure that
the systems are designed to meet the required safety level.
Integrated Circuits (IC) play an important role in ensuring
safety of the application. The device and development costs
of “adding” safety on chip can be pretty high, calling for new
solutions to be developed. While software based techniques
can be used, it involves significant effort to develop these
tests and quantify the coverage as required by the safety
standards. Simple on-chip solutions when planned ahead in
the design cycle can save significant effort / cost in enabling
safety.

While it may call for adding new logic on-chip to enable
field-testing of the device, it is important to ensure that the
area and cost overhead due to the additional logic is minimal.
To enable this, we should reuse the logic deployed for
manufacturing test to enable field self-test. In this paper, we
propose methods to reuse the on-chip Design for Test
modules developed for manufacturing test of the device to be
used for field-test. The challenges associated with supporting

field-test and the design techniques to overcome them are
also discussed in this paper.

This paper is organized into seven sections. Section 2
provides the background on need for tests in application and
prior approaches used to support these tests. Section 3
discusses the safety concepts to which a device should
adhere and the metrics to quantify the safety level of a
device. Section 4 discusses the challenges and techniques to
test digital logic at power-up and run-time. Sections 5 and 6
discuss the design techniques to test memories and analog in
application. Section 7 concludes the paper.

II. BACKGROUND AND RELATED WORK

Integrated circuits used in safety critical applications can
fail due to various reasons like ionizing radiation, ageing,
excess temperature or voltage conditions etc. We use a
representative example (described in [3]) to illustrate the
impact of IC failure on the application.

A. Application case study

Consider the example control IC (Digital Controller)
used in traction control system of an electric vehicle. The
control IC receives torque/speed set-point command from
supervisor IC based on information from input functions like
accelerator, brake pedal, etc. The control IC senses torque by
measuring the motor phase current. The processing element
in the control IC will determine the system error by
comparing the set-point torque received from the supervisor
IC with the sensed torque and execute control algorithm to
make this error zero. The response will be conveyed to the
motor as change of applied power, which is done by
controlling the power-stage using pulse width modulation
techniques as indicated in Figure 1. The closed loop
operation happens periodically based on some system events.
Once the set of operation completes, the Control IC will wait
(called as the idle slot) for a system event to process the next
set of information.

Figure 1: Closed loop control system

Impact of a fault in the control IC at the application level

can be understood by examining the impact of a fault in each
of the modules in that chip.

mailto:swathig@ti.com

1) A fault in the sensor module (CAP) [4] can lead to

incorrect sensing (higher/lower than actual) of speed.

Incorrectly sensed speed input to the control algorithm

can result in incorrect processing which can in turn lead

to inadvertent acceleration or deceleration

2) A fault in the processing element (CPU) will cause

incorrect processing during control algorithm execution

causing inadvertent acceleration or deceleration.

3) A fault in the actuation module (PWM) [5] output can

cause the output to stick to either zero or one, again

resulting in inadvertent acceleration or deceleration.

As illustrated in the above case study, it is important to
ensure correctness of each of the components of an IC, to get
a desired functionality from the IC used in a safety critical
application.

B. Prior Work

A variety of techniques are available to check for the
correctness of a device. A commonly used technique is to
test using software [6]. A set of software tests is created, to
check for critical functionality of the device. These software
tests are run periodically (at power-up and in idle slots) to
screen for any defects in the device. However, these tests are
application based and hence every new application requires a
new test. This involves significant effort in generating
optimized tests to reduce the test time and memory
requirements. Quantifying the coverage attained with
software tests through functional fault simulation is a very
laborious process.

Design for Test (DFT) based structural tests are proposed
for the digital logic. These tests overcome the limitations of
software based tests as they are independent of the
functionality. The effort involved in generating these tests is
minimal and quantification of tests coverage can be done
easily. Coverage and test time with software and DFT based
structural tests for an IP with 3000 flip-flops is shown in
TABLE 1.

TABLE 1. SOFTWARE TEST VS STRUCTURAL TEST
Self-test

type
Details Coverage

Test
cycles

Test time
(us)

Software

(S/W)

Software test

suite
43.87% 21625 216

DFT based
structural
tests

Detecting all
faults detected by

S/W self-test

43.87% 10010 100

Full Hardware
test suite

97.77% 21625 216

Alternatively hardware redundancy [7] is used for some
modules. In this method, result from redundant module is
compared with result from the actual module to determine
the correctness. However, this comes with an area overhead
and it is practically not possible to have redundancy for all
modules in a design.

The techniques to choose the right DFT solution and the

tradeoffs associated are discussed in following sections. For

modules like analog and memories, where DFT based

structural tests are not possible, alternative tests are

proposed.

III. FOUNDATIONAL SAFETY GUIDELINES AND CONCEPTS

Various functional safety standards have been established
over the years to address hazards caused by malfunctioning

behavior of electronic devices in safety applications. Of
these, ISO 26262 functional safety standard addresses the
requirements from automotive standpoint. The standard
defines requirements at various stages of system life cycle
including development. Various techniques should be
incorporated in design stage to enable an SOC to comply
with the requirements specified in ISO26262 standard.

As discussed in flowing paragraphs (taken from [8])
causes of application failure are classified into (i) Systematic
failures and (ii) Random failures. Detailed classification is
shown in Figure 2.

Figure 2. Failure classification as per ISO26262

 Systematic failures typically arise due to design quality

issues (e.g. bugs in the design), manufacturing issues (e.g.
faults escaping due to insufficient manufacturing test), non-
adherence to operating conditions (e.g. device operating in
conditions outside the specified temperature, voltage,
humidity conditions), etc. These failures are repeatable in
nature and can be controlled to a large extent by following a
regimented approach (process) during the product life cycle.

Random failures occurring in a device can be due to
permanent faults or transient faults. Permanent faults are
caused by ageing phenomena like Negative Bias
Temperature Instability (NBTI) and Hot Carrier Injection
(HCI) [10]. Transient faults are caused due to alpha particle
and neutron strikes. A permanent fault, as the name
indicates, causes permanent damage to the chip and will
force the chip to be replaced in most of the cases. Random
faults can be further classified into single point fault, residual
fault, multiple point fault and safe fault [9]. The ISO26262
definitions for these faults are as follows: A single point
fault is a fault which is not covered by any safety mechanism
and whose failure can lead to violation of the system safety
goal. Residual faults refer to a subset of faults that can lead
to violation of a safety goal, where this subset of faults is not
covered by the existing safety mechanisms. A multi-point
fault is a fault which standalone cannot cause the violation
of safety goal, but the same fault in combination with other
independent faults can lead to violation of safety goal. A
fault whose occurrence will not significantly increase the
probability of violation of a safety goal is called a safe fault.

Quantitative analysis for a circuit failure mode provides
an objective means to ascertain the safety worthiness of a
given circuit. These metrics can be used to (i) objectively
assess safety effectiveness of the design to cope with the
random hardware failures, (ii) guidance towards making
enhancements for safety in the design based on afore-
identified effectiveness. These are measured in terms of

Single Point Fault Metric (SPFM) and Latent Fault Metric
(LFM).

SPFM = 1-
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠 + 𝑆𝑖𝑛𝑔𝑙𝑒 𝑃𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑓𝑒𝑡𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠

LFM = 1-
𝑈𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑃𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑠

𝑆𝑎𝑓𝑒𝑡𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠 −𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠

In this paper, we focus on techniques to provide random
fault coverage.

IV. DIGITAL LOGIC TEST

Digital logic on an SOC includes the CPUs, digital
peripherals, etc. Scan based DFT techniques are used for
manufacturing test of this logic. The same on-chip
infrastructure can be utilized to screen for defects in field as
well.

A. Power-on self-test

At power-up, pre-operational checks need to be
performed to ensure that CPU can boot-up correctly and
perform the required operations. Full chip logic self-test can
be used for addressing the latent fault coverage requirements
of ISO26262 applications with key on-off hours <24 hours.
Start-up self-test directly impacts the boot time of the
application and we had a requirement from the end
application to reach 90% coverage within 2ms. In addition,
we wanted to reduce the area to be minimum so as to reduce
the overall cost incurred due to the safety solution.

We used LBIST compression solution from Cadence [10]

for power-on self-test to help in reducing the on-chip

memory required to store the patterns.

Figure 3. LBIST Architecture

The architecture for LBIST is shown in Figure 3. A

golden seed is loaded into pseudo-random pattern generator

(PRPG), which generates input patterns applied to scan

channels. A multiple-input signature register (MISR) is used

to capture the response from scan channels. The coverage vs

patterns count for a regular LBIST is as shown in Figure

4Error! Reference source not found.. As can be seen from

the graph, the test coverage with a given seed tapers-off at a

certain point, leading to huge pattern count for a minimal

increment in coverage. Higher pattern count translates to

higher test time at power-up, thereby impacting the boot

time. Also, 90% coverage cannot be achieved with single

golden seed loaded in PRPG.

To achieve the coverage goal of 90% with less numbers

of patterns, experiments have been done by inserting test

points on-chip. Test points increase controllability and

observability for the faults that cannot be easily detected by

ATPG tool, thereby improving the coverage. The number

test points inserted is increased from 100 to 7000. With 100

test points 90% coverage could not be achieved. With 2500

test points, test coverage of 90% was achieved with 10240

patterns. As can be seen in Figure 5, pattern count for desired

coverage decreases with addition of test points. With 7000

test points, 90% coverage was attained with just 3200

patterns.

Figure 4. Coverage vs Pattern count with LBIST

Figure 5. Pattern count decrease with test points

However, though the test time decreases, increased

number of test points result in area overhead. So, trade-off

has to be considered to arrive at the final solution. We

achieved the test time target of <2 ms (10000 patterns

running at 100MHz frequency with chain length of 185) and

minimal area of 0.2mm
2

(combination of LBIST code area

and test points) with 2500 test points.

B. Run-time Build-In Self-test for CPU

CPU is a critical component of SOC and it needs to be
checked at regular intervals during the application. We used
Run-time Build-In Self-Test (RT-BIST)[11] capability to
perform testing of the CPU logic during application. This
will help address the SPFM requirements of ISO26262.
Various challenges to support run-time test of a CPU and
design techniques to overcome them are discussed below.

1. Easier integration with application environment

RT-BIST run is triggered in the idle slots of the CPU.
The application and test slots are interleaved as shown in
Figure 6. To make use of the smaller idle slots of CPU, the

overall test should be split into multiple small intervals.

 Figure 6. Interleaving Application and Test slots

 A1 T1 A2 T2 A3 T3 A4

Normal application slot Test application slot

The compression architecture should be chosen such that
the complete test for full coverage can be split into multiple
smaller test intervals. Each pattern should be a separate
entity to provide interruptible capability after every pattern
run. OPMSR compression architecture from Cadence [12] is
chosen in which each input pattern is a separate entity. Hence
the test slot duration can be as small as one pattern
application time, which is twice the chain length. OPMISR
compression architecture is shown in Figure 7. The number
of internal stumps is increased to reduce the chain length. We
designed to support a chain length 20, so that test time for
one pattern execution (shift-in, capture, shift-out along with
other state-machine overheads) is 50 cycles. This ensures
that even small idle periods in application environment can
be used for triggering RT-BIST operation. Also, the
intermediate states (context and result) of RT-BIST should
be preserved between intervals so that the BIST operation
can be resumed after it is interrupted. This is ensured by
shifting in the last shift data of the previous test slot, when
RT-BIST is triggered in next test slot. The result is stored in
MISR (Multiple Input Signature Register) and is
accumulated across tests. Design should take care that
signature is not disturbed when we get back to application.

2. Isolation of BIST logic

Any activity in the CPU during the RT-BIST run should

not disturb the peripherals connected to it. During BIST,

random test data is shifted into the scan chains, and CPU

outputs change every cycle. The outputs can assume invalid

state and may cause spurious device operation, if they

propagate to the peripherals connected to the CPU. Similarly,

the inputs to the CPU may vary during test causing invalid

values to be captured and can cause test to fail. To avoid

these, the CPU is completely isolated during the execution of

RT-BIST.

3. Response time to events should be low

System performance should not be impacted because of
test. Any external interrupts to the CPU during the RT-BIST
operation should not be lost. In case of interrupts, RT-BIST
operation should be interrupted as early as possible and
interrupts occurring during RT-BIST run should be
addressed with minimum interrupt service latency so that the
system performance is not impacted. In our approach, the
amount of time for which interrupts can wait is made
programmable to the user. We have built a mechanism inside
BIST controller to log any interrupts to the CPU during RT-
BIST operation as shown in Figure 8. This ensures that no
interrupts are lost during RT-BIST operation when the CPU
is not able to service those interrupts.

4. Achieving minimal on-chip memory and test time

The tests should give reasonable amount of confidence
about the correctness of the system. This can be obtained by
attaining high fault / defect coverage, e.g. 99%+ for stuck-at
fault model. The pattern count inflates as the coverage
reaches near 99%. Also, not all application will require the
very high covered offered by RT-BIST. The BIST operation
can be programmed to run so as to obtain a desired coverage.
As shown in Table 2, there is a 3x pattern count difference
between achieving 95% and 99% test coverages. Our
architecture supports user configurable targeted coverage to
reduce the total test time. At start-up if a complete check has
to be done, 99% option can be targeted. On the other hand, if
the test has to be run on few modules very frequently in less
time, then 95% option can be chosen, where critical portions
of design will be covered more frequently.

TABLE 2. COVERAGE VS TEST CYCLES
Sl. No Structural coverage on total core

faults
Test cycles

1 95% 12350

2 99.4% 37180

5. Quick response to failure

The failure information should be provided to the system
in minimal time so that the error propagation to other parts of
the system is contained. In typical BIST operations, the
computed signature is compared against golden signature at
the end of the test to certify that the device is functioning
correctly. However, this is not recommended for field test
and the failure has to be intimated as soon as possible. RT-
BIST architecture supports comparison of the computed
signature with the golden signature after every few patterns
to reduce the error detection latency. The number of patterns
after which a comparison is done is configurable. It must be
remembered that targeting aggressive reduction in error
detection latency directly impacts the pattern memory size.

6. Power during test

Shift-in and shift-out of the test data using the system
clock at its full-speed can cause IR drop issues because of
high toggling activity during test. To address this we have an
option to use a divided clock to reduce the shift frequency
while using the high frequency clock for capture, to ensure
that the at-speed faults are detected.

Re-issue

interrupts

0

1

Interrupt
logging

unit

CPU
System

Interrupt
Controller

Interrupts

 BIST

Controller

Figure 7. OPMISR Compression Architecture

Figure 8. Interrupt logging unit

V. MEMORY TEST

 Memories (SRAM and ROM) should be tested in field to
detect both permanent and transient faults. Test of memories
at start-up can be used as an effective method for providing
latent fault coverage requirements for the memories. Using a
CPU to test all memories sequentially consumes significant
amount of time and adds to start-up time. There are instances
where memories inside peripherals are not directly accessible
by CPU and hence cannot be tested in field if CPU based
tests are used.

 For manufacturing test of memories, Programmable
memory BIST (PBIST) [13] is used. We have used the same
infrastructure to enable testing of memories in field. PBIST
controller consists of a small processing unit with an
instruction set targeted specifically towards testing of
memories. PBIST helps to have access to all the device
SRAM and ROM instances. PBIST interface to memories is
shown in Figure 9.

Figure 9. PBIST Interface to memories

A dedicated on-chip ROM is used for storing the
instruction codes, which are then loaded into the PBIST
controller. The memory BIST controller can be configured to
do complete memory test through the ROM, hereby enabling
memory test in the customer's application. Using PBIST
controller, memories of the same type can be grouped
together and tested in parallel. This allows for significant test
time reduction for power up self-test. As shown in TABLE 3,
by using PBIST to test memories in parallel, test time for
testing all memories at start-up, reduced by 5x on a design
with 16 memory instances.

TABLE 3.CYCLES FOR MEMORY TEST WITH PBIST AND CPU
Memory Number of

memories
tested
together

Address
locations

Test cycles

PBIST CPU TEST

Mem1 4 4096 53248 276889.6

Mem2 8 1024 13312 138444.8

Mem3 2 256 3328 8652.8

Mem4 2 512 6656 17305.6

Total cycles for testing all memories at
start-up 76544 441292.8

However, enabling multiple memories in parallel can
cause increased power consumption. Analysis has been done
to determine the number of memories that can be enabled in
parallel to contain the power during test within spec limits.

Interval based PBIST execution can also be used to meet
the permanent fault coverage requirements of memories.
Typically, ECC / Parity mechanism is used as the primary
diagnostic for memories. However, ECC and Parity safety
mechanisms do not provide coverage of the address decoder
faults. PBIST based memory tests can be used to augment
the coverage provided by primary diagnostic mechanisms.

FTTI is the time duration within which any fault in the
chip need to be detected. 10ms is used as the typical FTTI
value for many automotive applications like power steering,
braking, etc. The tests for all the memories need to be
completed within this duration. However, with just PBIST
this may not be practical at times. Hence, we have
implemented a background memory checking engine [14]
which can perform the test without consuming bandwidth
from PBIST and CPU. As shown in Figure 10, the
background memory checking engine snoops for idle cycles
and perform CRC check of Non Volatile Memory and static
SRAM contents (e.g. look-up tables, code copied from Flash,
etc.). This feature enables a zero overhead memory test
capability with minimal hardware addition.

Figure 10. BRCRC implementation

VI. ANALOG TEST

Our SOCs typically consist of many on-chip analog IPs
like Voltage regulators (VREG), Oscillators, ADCs, DACs,
and Programmable Gain Amplifiers (PGA) etc. For a reliable
SOC operation, it is critical to ensure that these analog IPs
are functionally well.

During production test, oscillators and PLLs need to be
trimmed to set their clock outputs to desired frequency range.
To enable these tests, an on-chip Dual Clock Comparator
(DCC) module is supported, which measures the frequency
of a selectable clock source, using the input clock as a
reference. Two independent counter blocks count clock
pulses from each clock source. The clocks decrement
counters in order to compare their relative frequencies. The
same infrastructure can be utilized to determine the accuracy
of a clock signal during the execution of an application.
Accurate clock frequency is critical for correct functioning of
the device and any change in frequency should be
immediately detected. Using DCC, a 2% drift from the
expected frequency in a clock as required by the functional
safety requirements, can be detected within few micro-
seconds of time.

In the presence of an on-chip ADC, voltage outputs from
circuits like DACs and VREG can be measured on-chip by
looping them back to the ADC as shown in Figure 11. This
mechanism can be used during application to check voltage
outputs from critical components like VREG and bandgaps.
At power-up, voltage outputs from critical components like
VREG, bandgaps are looped back to ADC and measured to
ascertain that they are within the permissible limits. Software
routines are developed to trigger these tests by the CPU at

SRAM/ROM

BGCRC Module

Existing functional/debug access

CRC READ REQ

SRAM/ROM
Wrapper

Arbitration

BGCRC fetch request will be granted if
there are no pending functional accesses

power-up. Loop back tests are used for providing SPFM
permanent fault coverage and LFM coverage.

Figure 11. On-chip ADC and DAC loopback

VII. CONCLUSION

We have described a set of DFT techniques which can be
used to enable functional safety for integrated circuits. We
described how the test coverage and start-up time goal of
90% and 2ms respectively for start-up self-test was achieved.
We demonstrated the techniques to achieve shorter test
interval of 50 cycles for run-time logic self-test. Techniques
to address test power and handling of critical interrupts to
CPU during field test are also discussed. Test time for
memories in field has been reduced 5x by enabling testing of
memories in parallel. On-chip techniques like DCC and
analog loopback to ADC are described to enable test of
analog modules. The techniques described are generic and
are applicable to a wide range of SOCs targeted for safety
critical applications.

ACKNOWLEDGMENT

The authors would like to thank R. Parekhji, who has helped in

architecting the run time field test solution, D. Paul and S.

Banerjee who have helped in experiments and analysis for test

points insertion to aid power-up self-test.

REFERENCES

[1] ISO 26262, International standard for functional safety of electrical
and electronic systems in production automobiles, Std., 2011.

[2] IEC 61508, International standard for functional safety of
electrical/electronic/programmable electronic safety-related systems,
Std., 2010.

[3] V. Prasanth, R. Parekhji, and B. Amrutur, “Safety analysis for
integrated circuits in the context of hybrid systems,” in International
Test Conference, 2017.

[4] Enhanced Capture Module (eCAP) Reference Guide. [Online].
Available: http://www.ti.com/lit/ug/sprufz8a/sprufz8a.pdf

[5] Enhanced Pulse Width Modulator (ePWM) Reference Guide.
[Online]. Available: http://www.ti.com/lit/ug/spruge9e/spruge9e.pdf

[6] P. Bernardi, L. Ciganda, M. de Carvalho, M. Grosso, J. Lagos-
Benites, E. Sánchez, M. S. Reorda, and O. Ballan, “On-line software-
based self-test of the address calculation unit in risc processors,” in
2012 17th IEEE European Test Symposium. IEEE, 2012, pp. 1–6.

[7] J. Borcsok, A. Hayek, and M. Umar, “Implementation of a 1oo2-risc-
architecture on fpga for safety systems,” in Computer Systems and
Applications, 2008. AICCSA 2008. IEEE/ACS International
Conference on. IEEE, 2008, pp. 1046–1051.

[8] V. Prasanth, D. Foley, and S. Ravi, “Demystifying automotive safety
and security for semiconductor developer,” in Test Conference (ITC),
2017 IEEE International. IEEE, 2017, pp. 1–10.

[9] M. Bellotti and R. Mariani, “How future automotive functional safety
requirements will impact microprocessors design,” Microelectronics
Reliability, 2010.

[10] B. Keller and T. Bartenstein, “Use of misrs for compression and
diagnostics,” in Test Conference, 2005. Proceedings. ITC 2005. IEEE
International. IEEE, 2005, pp. 9–pp.

[11] S. Gangasani, S. Alampally, P. Chowdhury, S. B. Chakravarthy,
P. Sampath, and R. A. Parekhji, “Interruptible non-destructive run-
time built-in self-test for field testing,” Aug. 5 2014, US Patent
8,799,713.

[12] B. Keller, “Encounter test opmisr/sup+/on-chip compression,” in
IEEE International Conference on Test, 2005. IEEE, 2005, pp. 2–pp.

[13] R. Damodaran and A. Ramamurti, “Unique pbist features for
advanced memory testing,” Jan. 6 2009, US Patent 7,475,313.

[14] P. V. Pillai and S. G. Langadi, “Background memory test apparatus
and methods,” 2016, US Patent App. 15/346,737.

