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Abstract— Timing convergence, while reducing area and 

power, is one of the hardest challenges in the physical design of 

nanometer VLSI chips which push the limits of frequency 

entitlement. If there is clock tree divergence (CTD) due to 

architecture in a high frequency design, then margins are 

required during optimization stage. These margins will account 

for divergence at the early stages that can significantly impact 

the frequency entitlement. However, each timing path can have 

different divergence values and applying the same margins 

across all paths is not optimal. To address CTD, applying flat 

margins can lead to incorrect frequency entitlement, impacting 

area and power. If accurate path specific margins based on CTD 

are used, it will help in early optimization stages i.e. at logic - 

synthesis and placement to achieve the right power, performance, 

area and schedule (PPAS). Early identification of critical paths 

which are highly clock tree divergent at logic-synthesis stage and 

in-time architecture feedback will go a long way to reduce design 

or project cycle time. 
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I. INTRODUCTION  

 Timing closure of a VLSI design is an iterative process. At 

each stage of the backend flow, i.e. logic synthesis, placement, 

clock-tree synthesis and routing, different challenges are 

exposed to the task of timing closure. At the logic synthesis 

stage, the basic netlist and connections are available. At 

placement stage, floorplan related variations will start to take 

shape. Post clock-tree synthesis (CTS), clock latencies will be 

applicable. This results in clock skew, CTD impacting timing. 

Further, post routing, the real net delay will come to play. At 

each of these stages, timing will degrade.  

Especially for a high frequency design with considerable 

CTD, appropriate selection of design-ware components is of 

paramount importance. This will largely impact to what extent 

synthesis tool can perceive the criticality of the design. To 

achieve this, traditionally flat margins are used across the 

flow. Calculation of flat margins is shown in Table I.  The tool 

natively supports the application of flat margins as part of 

clock uncertainly for any given clock. However, this option 

offers no flexibility and penalizes all paths equally. As we 

attempt to push frequencies higher, the choice of these flat 

margins becomes crucial. Lower margins can lead to incorrect 

frequency entitlement at signoff stage as paths may not be 

optimized sufficiently. Higher margins can penalize area in 

certain parts of design, since not all paths are timing critical in 

a design. In extreme cases, high margins can cause problems 

in the timing optimization itself and result in failure of timing 

closure. This current estimation of margins is very unscientific 

and is derived from previous design knowledge. 

For any given clock, timing paths in the design can be roughly 

divided into 4 categories  

1) Low Divergence + Low path depth  

a.  Optimize for best area and power  

2) Low divergence + High path depth  

a.  Optimize to meet timing without area and power impact 

3) High divergence + Low path depth  

a.  Optimize to meet timing smartly to avoid iteration from 

synthesis. 

4) High divergence + High path depth  

a.  Identify such critical paths early which are frequency 

entitlement bottlenecks and provide RTL feedback. 
As the nature of each category is different, a single flat 

margin cannot address all of them. Hence to get the best of 
each of these categories, applying path specific real margins 
will give us the best frequency, area and power entitlement. 

II. TRADITIONAL MARGINS 

This section explains the current methodology of flat 

margins. In this case, a certain amount of clock latency and 

CTD is assumed for the design based on previous design 

experience as shown in Table I. Margins are calculated based 

on this assumption and applied as part of uncertainty across 

the optimization stage (till pre-CTS). They are removed post 

CTS. 

 
TABLE I.  Flat Margin Calculation 

Predicted Latency 7000ps 

Assumed CTD 30% 

Lauch_clock derate 1.113 

Capture_clock derate 0.947 

Skew 250ps 

 
Divergence margins = 7000 * 30 (1.113 – 0.947) + 250 = 602ps 

At post CTS stage, if a violating path has balanced clock 
tree and no useful skew is employed, then the violation is most 
likely due to CTD. So the divergence that was initially 
assumed to calculate margins is incorrect or not sufficient for 
these paths. This had led to under optimization of these paths 
from logic-synthesis stage. In such cases, by the existing 
methodology, this is taken as feedback and synthesis is 
repeated with extra uncertainty for these paths . Then 



placement and CTS is redone to check if the path is meeting 
frequency. If the path fails even after applying high margins, 
architectural feedback is provided to the front end team. 

Drawbacks of current methodology can be summarized as: 

1) Inability to predict frequency entitlement at logic 
synthesis stage. 

2) Requirement to complete CTS in order to find critical 
paths and hence delayed architectural feedback. 

3) Unscientific iterative margin process impacting PPAS. 

For a high frequency design with considerable CTD, these 
drawbacks impact significantly. A better methodology is 
required to bridge the gap between actual CTD and margins 
applied at logic synthesis stage. 

III. DIVERGENCE ENGINE 

To address CTD margins, an algorithm  is developed  
which predicts and dumps path specific divergence values. 
This algorithm is called the Divergence Engine (DE). To 
understand the divergence calculation intricacies, take the case 
of a typical timing path between launch flop FF1 and capture 
flop FF2 shown in Fig. 1.As shown in Table II estimated 
divergence is 44%. 

 

Fig. 1 Typical timing path at pre-CTS stage 

 

TABLE II. Actual calculation of clock divergence pre-CTS stage  

Common clock path 5 stages 

Uncommon launch clock path 4 stages 

Uncommon capture clock path 4 stages 

Divergence = Worst Uncommon clock path/Total clock path    = 4/9 = 44% 

 

Assume after post CTS expansion shown in Fig. 2 

 

 

Fig. 2 Timing path at post clock tree expansion 

 

TABLE III. Clock divergence post CTS stage 

Common clock path 8 stages 

Uncommon launch clock path 13 stages 

Uncommon capture clock path 12 stages 

 
Divergence @ post CTS stage = 13/21 = 62% 

There is a huge difference between pre-CTS and post CTS 

divergence percentages. In order to fill this gap, the major 

challenge is to predict the buffer insertion points done by the 

CTS tool. Different approaches to achieve this will be 

discussed below. For illustration purposes, launch path is 

assumed to have worst uncommon clock path. 
 

A. Fan-out based weight estimation 

One basic reason for buffer insertion at CTS stage is to meet 

transition for high fan-out nets. Therefore, if the fan-out of an 

RTL instantiated clock tree element (CTE) is high then it is 

reasonable to assume that the CTS tool would insert buffers 

here. For example, if fan-out of a CTE was 5, then CTS could 

insert 1 buffer hence a weight of 1 in assigned to this CTE. 

The total count of CTE would be weight (1) + the element 

itself = 2. In this manner, more the fan-out more the weight 

assigned. This is done for every RTL instantiated CTE as 

shown in Fig. 3 

 
Fig.3 Timing path with fan-out based weight estimation 

 
TABLE IV . Predicted Divergence using this methodology 

Common clock path 5 stages + 5 weight 

Uncommon launch clock path 4 stages + 1 weight 

 

Divergence = 5/15 = 33% 

 

There is a huge gap in predicted (33%) vs actual divergence 
(62%) in this methodology. There was a miscorrelation 
because floorplan based inputs were not considered. Some key 
findings were : 

1) The source of the clock tree example PLL or oscillator is 
placed further away in the floorplan from its branch and hence 
tool will always buffer the path to meet a given transition 
during CTS. 

2) This is also the case when the clock path traces through 
different modules. As a single module tends to be clustered 
together and could be placed far away from another module, 
CTS tool will buffer to meet transition. 

B. Mixed Bag Approach 

From previous experiment, it was concluded that adding 

weights is the right approach but it has to be fine-tuned to add 

weights appropriately by making it placement aware. Further, 

as the percentage of clock tree divergence is used to calculate 

the margins, the exact number of buffers is not required; rather 

just the correct ratio of worst uncommon clock path and total 

clock path is needed. 

After doing extensive heuristic analysis on a post CTS 

database, the following key points were identified to enable 

weight insertion. 



 Add weights for every RTL instantiated ICG and 

MUX.  

 Add weights if the clock path changed modules. 

 Add weights to clock source. 

 

With this approach predicted divergence is shown in Fig. 4 

 
Fig 4. Timing path with weight estimation with mixed bag approach 

 

TABLE V. Predicted divergence using mixed bag approach. 

Common clock path 5 stages + 3 weight = 8 

Uncommon launch clock path 4 stages + 8 weight = 12 

 
Divergence = 12/20 = 60% 

 

With this an excellent correlation between post CTS 

divergence data (62%) and predicted data (60%) is obtained. 

 

The exact values of weights to be used for each of the above 

3 key points for divergence prediction algorithm is based 

purely on heuristically analysis done on existing post CTS DB 

for a platform. In an experiment, weights were configured for 

a already existing digital design based on its post CTS 

database. Using these weights, on comparing the post CTS 

CTD percentage to predicted divergence percentage there was 

very good correlation with accuracy of +/-10%, if the timing 

paths were balanced. With the same weights in place DE was 

run on another design belonging to the same platform and 

similar extent of high accuracy was achieved. Hence, if 

weights are configured for DE for a platform design, then they 

can be reused across different derivatives from the platform. If 

a design is the first of its kind to a new platform, DE can be 

run by assuming certain weights to begin with. Paths which 

are predicted to be divergent at pre-CTS will remain divergent 

even after post CTS. But the predicted divergence percentage 

vs actual post CTS based divergence percentage could vary 

some extent. The weights will have to be fine-tuned based on 

post CTS feedback as shown in Fig 5. 
 

IV. DIVERGENCE PREDICTION ALGORITHM AND 

RUN TIME IMPROVEMENTS 

 

The aim of the divergence prediction is to predict, with 
sufficient accuracy, the actual divergence percentage of each of 
the timing paths in the design before any clock tree is actually 
built. The divergence engine (DE) then can be called at various 
stages to achieve corresponding aims (Fig 5) 

 

Fig.5 Different stages where DE can be used in the design 

 DE needs only the netlist and constraints as inputs to 

calculate divergence. The engine is run in the sign-off tool. 

Since only instances and their connections are analyzed, 

accurate delay calculations are not required. Once the 

divergence values are estimated, the DE will require values of 

derate, estimated skew and clock insertion latency to calculate 

the final uncertainty values. Ideally divergence for each and 

every interacting flop pair needs to be calculated. If there is a 

design which has 100K flops, the timing path interactions can 

run into 20Million. Hence calculation of divergence, based on 

every timing path would be time consuming. To solve this 

problem, the flop’s immediate fan-in level-1 element is used, 

that is a RTL instantiated CTE. If the divergence is calculated 

for one flop pair under two interacting level-1 CTE, then all 

the flops under them will have the same divergence. Logic-

synthesis inserted clock gating cells are skipped as they can 

change with every synthesis run. 

 
DE is composed of 3 major parts. The first step is to find 

the leaf level RTL instantiated CTE for each sequential 
element. Divergence will be calculated for each of these CTE 
pair. The list of CTE (Fig. 6) is written out to a file to be used 
by the next stage.  

Procedure: create_cteList.tcl 

Inputs: timing database of the design under process 

Outputs:  

1. CTE – fan-out flop mapping for all registers. 

2. CTE – RTL clock tree element mapping. 

1. Obtain a list of all the leaf sequential elements in the design. 

2. For each of the flops, obtain the fan-in element. 

a. If such an element exists 

i. Look into the fan-in to this element to obtain the RTL CTE element. 

ii. If found, assign the CTE to the RTL CTE. 

iii. Append the flop to the CTE fan-out list. 

b. Write the fan-out list of CTE to the fan-out file. 

3. Close the file handles and return the output files. 

Fig. 6 Creating the CTE list 

 

 

The next stage predicts the total clock path based on the 

weight assumption given for single timing path for a given 

CTE pair (Fig. 7). 



 
Procedure: predict_clock_path 

Inputs: List of pre-CTS elements in path 

Outputs: Number of elements expected post CTS expansion 

1. For each element i in the path, 

a. Compare the module name with the previous element’s module name 

i. If base module names are different, add a weight of 5 

ii. If the second module names are different, add a weight of 1 

b. Check the cell name of the element 

i. If it is an ICG, add a weight of 2 

ii. If it a CTMUX, add a weight of 2 

2. Return the total number of elements + weights 

Fig. 7 Heuristic for estimating path depth 

 

This process is iterated for single CTE w.r.t. all other CTEs. 

If any valid path is found, the output is written the file. Since 

each CTE has to be analyzed with all other CTEs, this step is 

time intensive. To optimize the run time during this step, the 

algorithm has been designed such that the calculation of 

divergence for multiple CTE pairs can happen in parallel..  

In the last step, the divergence output is parsed through a 

Perl script to generate uncertainty command files that can be 

read by optimization pre-CTS tool. 

 

V. EXPERIMENTAL RESULTS 

A. Test-Case Details 

The test case that considered to check out DE is a digital  

design which is area and power critical. . The design had been 

closed using flat margins assuming 50% clock divergence. 

Using DE , divergence was calculated for every timing path 

and then mapped to a pie chart details in Fig. 9. 

 
Fig. 9 CTD pie chart of digital design 

 

From the CTD pie chart following are some key take-away. 

1) Not many paths with high divergence exist in design. 

2) If 50% of the design is assumed to be divergent  for 

margin calculation, it would be valid only for ~5% of 

the design. 

3) The margins were pessimistic for ~95% of paths 

4) With the use of margins based on divergence engine, 

it’s expected  to see area benefit for design. 

 

B. Test-Run Details 

In order to check out the divergence aware margin 

methodology on Design, 4 runs were given till post CTS setup 

optimization.  

 

1. Traditional Methodology  with flat margins 

A flat margin of 50% was assumed. 

 

Clock Latency = 8000ps 

Launch derate  = 1.0632 

Capture derate  = 0.945 

Skew   = 250ps 

Flat margin = 50% 

Divergence margins = 8000 * 50% (1.0632 – 0.945) + 250  = 

714ps 

Results are presented in Fig. 10 

 

2. Reduced flat margin flow 

In this case, 12% of design is assumed to be divergent based 

on the CTD pie chart. 

Divergence margins  = 8000 * 12% (1.0632 – 0.945) + 

250 = 363ps 

Results are presented in Fig. 11 

 

3. Divergence aware methodology (DAM) 

This run is with the CTD based divergence aware 

methodology. Details are captured in section C (Divergence 

aware methodology) . 

Results are presented in Fig.12 

 

4.  No margin flow 

Just to make sure design was not over penalized w.r.t margins 

and to see how much area gain can be done, design was run 

with no margins. Results are presented in Fig.13 

 

C. Divergence aware methodology (DAM) 

 

In this section explains DAM calculations. 

1) DE is run on synthesized netlist in signoff timing tool to 

calculate “Divergence Percentage” for all possible paths 

for a given clock w.r.t. all RTL inserted CTE. This 

helps to study the overall divergence percentage of 

design. And pick a flat divergence % number which 

represents most of the paths and add that as flat 

uncertainty. In this case it was 12%. Some portion of 

flat margins is included as the optimization tool is 

unable to take all the path based uncertainty given. 

2) To calculate this flat margin, below formula is used and 

added that as clock uncertainty in addition to clock jitter. 

 

     Divergence margins = 8000 * 12 (1.063 – 0.945) + 250 

    = 363ps 

3) For paths which have high divergence (> 12 %), extra 

uncertainty is added   in addition to flat margins. 

 

 

 



 

 

For example, 

a) Assume paths between (Launch CT element) ICG1 and 

(Capture CT element) ICG2 have a predicted divergence 

of 40%. 

b) Overall flat divergence is assumed to be 12%. Hence clock 

to clock uncertainty applied for say CLK1 will be 363ps 

c) Rest 28% of divergence is specific to paths between ICG1 

and ICG2. This is applied as uncertainty at logic-

synthesis stage. 

d) Flops driven by ICG1 and ICG2 are grouped. Uncertainty 

is applied to only specific interacting paths . 
 

 

 

 
Fig 10 Results of  Traditional flat margin flow  

 

 
Fig 11 Results of  Reduced flat margins flow 

 

 
Fig 12 Results of  Divergence aware margin flow 

 

 
Fig 13 Results of  No margin flow 

 

 

 

 

 

 

 

 

D. Analysis of the experiment on Design. 

 

1) Traditional Margin flow. 

a) Good timing and leakage picture but area is high. 

2) No margin flow. 

a) ~5.8% area saved w.r.t traditional margin flow. 

b) Huge impact on timing with unrecoverable 330ns 

(20X) as total negative slack (TNS). 

c) 33% impact on leakage w.r.t traditional margin flow  

3) Reduced flat margin flow. 

a) ~3.5% of std cell logic area saving w.r.t traditional 

margin. 

b) 8X degradation in TNS post CTS which is 

unrecoverable. 

c) 10% increase in Leakage. 

4) Divergence aware methodology  

a) 3.5% std cell logic area saving 

b) Predictable timing picture at pre-CTS stage when 

compared to traditional flow. 

c) Good leakage. 

d) High run time. 

 

Hold optimizations do not affect results as CTS is not 

influenced but just data path optimization 

 

VI. CONCLUSION 

 

We have developed a custom-built divergence prediction 

engine that generates path-specific margins based on clock 

tree divergence with the following advantages.  

 

1) Complete and accurate prediction of expanded clock tree 

divergence at logic synthesis level without any physical 

information like floorplan. 

2) Very early architectural feedback to the RTL team on 

critical paths based on clock tree divergence. 

3) With realistic margins, we can predict target frequency at 

pre-CTS. 

4) Engine once configured (weights configured) for a 

platform works with same consistency across different 

designs. 

5) On a post CTS database, the engine can derive weights and 

hence can calculate the real margins which can be fed 

back to improve optimization. 

6) Divergence Engine can be run on any netlist with a quick 

turnaround time. 

 

This algorithm can also be extended to dynamically 

model the local clock skews, useful skew scenarios. 

 

 


