
Divergence Engine: Early prediction of clock-tree

divergence at Logic-synthesis stage
Sanjana Sundaresh , Murali Mohan Thota , Atul Garg

Texas Instruments India Pvt Ltd ,Bangalore,India

sanjana@ti.com,muralit@ti.com,atulgarg@ti.com

Abstract— Timing convergence, while reducing area and

power, is one of the hardest challenges in the physical design of

nanometer VLSI chips which push the limits of frequency

entitlement. If there is clock tree divergence (CTD) due to

architecture in a high frequency design, then margins are

required during optimization stage. These margins will account

for divergence at the early stages that can significantly impact

the frequency entitlement. However, each timing path can have

different divergence values and applying the same margins

across all paths is not optimal. To address CTD, applying flat

margins can lead to incorrect frequency entitlement, impacting

area and power. If accurate path specific margins based on CTD

are used, it will help in early optimization stages i.e. at logic -

synthesis and placement to achieve the right power, performance,

area and schedule (PPAS). Early identification of critical paths

which are highly clock tree divergent at logic-synthesis stage and

in-time architecture feedback will go a long way to reduce design

or project cycle time.

Keywords— clock tree divergence, early feedback, frequency

entitlement, clock skew

I. INTRODUCTION

 Timing closure of a VLSI design is an iterative process. At

each stage of the backend flow, i.e. logic synthesis, placement,

clock-tree synthesis and routing, different challenges are

exposed to the task of timing closure. At the logic synthesis

stage, the basic netlist and connections are available. At

placement stage, floorplan related variations will start to take

shape. Post clock-tree synthesis (CTS), clock latencies will be

applicable. This results in clock skew, CTD impacting timing.

Further, post routing, the real net delay will come to play. At

each of these stages, timing will degrade.

Especially for a high frequency design with considerable

CTD, appropriate selection of design-ware components is of

paramount importance. This will largely impact to what extent

synthesis tool can perceive the criticality of the design. To

achieve this, traditionally flat margins are used across the

flow. Calculation of flat margins is shown in Table I. The tool

natively supports the application of flat margins as part of

clock uncertainly for any given clock. However, this option

offers no flexibility and penalizes all paths equally. As we

attempt to push frequencies higher, the choice of these flat

margins becomes crucial. Lower margins can lead to incorrect

frequency entitlement at signoff stage as paths may not be

optimized sufficiently. Higher margins can penalize area in

certain parts of design, since not all paths are timing critical in

a design. In extreme cases, high margins can cause problems

in the timing optimization itself and result in failure of timing

closure. This current estimation of margins is very unscientific

and is derived from previous design knowledge.

For any given clock, timing paths in the design can be roughly

divided into 4 categories

1) Low Divergence + Low path depth

a. Optimize for best area and power

2) Low divergence + High path depth

a. Optimize to meet timing without area and power impact

3) High divergence + Low path depth

a. Optimize to meet timing smartly to avoid iteration from

synthesis.

4) High divergence + High path depth

a. Identify such critical paths early which are frequency

entitlement bottlenecks and provide RTL feedback.
As the nature of each category is different, a single flat

margin cannot address all of them. Hence to get the best of
each of these categories, applying path specific real margins
will give us the best frequency, area and power entitlement.

II. TRADITIONAL MARGINS

This section explains the current methodology of flat

margins. In this case, a certain amount of clock latency and

CTD is assumed for the design based on previous design

experience as shown in Table I. Margins are calculated based

on this assumption and applied as part of uncertainty across

the optimization stage (till pre-CTS). They are removed post

CTS.

TABLE I. Flat Margin Calculation

Predicted Latency 7000ps

Assumed CTD 30%

Lauch_clock derate 1.113

Capture_clock derate 0.947

Skew 250ps

Divergence margins = 7000 * 30 (1.113 – 0.947) + 250 = 602ps

At post CTS stage, if a violating path has balanced clock
tree and no useful skew is employed, then the violation is most
likely due to CTD. So the divergence that was initially
assumed to calculate margins is incorrect or not sufficient for
these paths. This had led to under optimization of these paths
from logic-synthesis stage. In such cases, by the existing
methodology, this is taken as feedback and synthesis is
repeated with extra uncertainty for these paths . Then

placement and CTS is redone to check if the path is meeting
frequency. If the path fails even after applying high margins,
architectural feedback is provided to the front end team.

Drawbacks of current methodology can be summarized as:

1) Inability to predict frequency entitlement at logic
synthesis stage.

2) Requirement to complete CTS in order to find critical
paths and hence delayed architectural feedback.

3) Unscientific iterative margin process impacting PPAS.

For a high frequency design with considerable CTD, these
drawbacks impact significantly. A better methodology is
required to bridge the gap between actual CTD and margins
applied at logic synthesis stage.

III. DIVERGENCE ENGINE

To address CTD margins, an algorithm is developed
which predicts and dumps path specific divergence values.
This algorithm is called the Divergence Engine (DE). To
understand the divergence calculation intricacies, take the case
of a typical timing path between launch flop FF1 and capture
flop FF2 shown in Fig. 1.As shown in Table II estimated
divergence is 44%.

Fig. 1 Typical timing path at pre-CTS stage

TABLE II. Actual calculation of clock divergence pre-CTS stage

Common clock path 5 stages

Uncommon launch clock path 4 stages

Uncommon capture clock path 4 stages

Divergence = Worst Uncommon clock path/Total clock path = 4/9 = 44%

Assume after post CTS expansion shown in Fig. 2

Fig. 2 Timing path at post clock tree expansion

TABLE III. Clock divergence post CTS stage

Common clock path 8 stages

Uncommon launch clock path 13 stages

Uncommon capture clock path 12 stages

Divergence @ post CTS stage = 13/21 = 62%

There is a huge difference between pre-CTS and post CTS

divergence percentages. In order to fill this gap, the major

challenge is to predict the buffer insertion points done by the

CTS tool. Different approaches to achieve this will be

discussed below. For illustration purposes, launch path is

assumed to have worst uncommon clock path.

A. Fan-out based weight estimation

One basic reason for buffer insertion at CTS stage is to meet

transition for high fan-out nets. Therefore, if the fan-out of an

RTL instantiated clock tree element (CTE) is high then it is

reasonable to assume that the CTS tool would insert buffers

here. For example, if fan-out of a CTE was 5, then CTS could

insert 1 buffer hence a weight of 1 in assigned to this CTE.

The total count of CTE would be weight (1) + the element

itself = 2. In this manner, more the fan-out more the weight

assigned. This is done for every RTL instantiated CTE as

shown in Fig. 3

Fig.3 Timing path with fan-out based weight estimation

TABLE IV . Predicted Divergence using this methodology

Common clock path 5 stages + 5 weight

Uncommon launch clock path 4 stages + 1 weight

Divergence = 5/15 = 33%

There is a huge gap in predicted (33%) vs actual divergence
(62%) in this methodology. There was a miscorrelation
because floorplan based inputs were not considered. Some key
findings were :

1) The source of the clock tree example PLL or oscillator is
placed further away in the floorplan from its branch and hence
tool will always buffer the path to meet a given transition
during CTS.

2) This is also the case when the clock path traces through
different modules. As a single module tends to be clustered
together and could be placed far away from another module,
CTS tool will buffer to meet transition.

B. Mixed Bag Approach

From previous experiment, it was concluded that adding

weights is the right approach but it has to be fine-tuned to add

weights appropriately by making it placement aware. Further,

as the percentage of clock tree divergence is used to calculate

the margins, the exact number of buffers is not required; rather

just the correct ratio of worst uncommon clock path and total

clock path is needed.

After doing extensive heuristic analysis on a post CTS

database, the following key points were identified to enable

weight insertion.

 Add weights for every RTL instantiated ICG and

MUX.

 Add weights if the clock path changed modules.

 Add weights to clock source.

With this approach predicted divergence is shown in Fig. 4

Fig 4. Timing path with weight estimation with mixed bag approach

TABLE V. Predicted divergence using mixed bag approach.

Common clock path 5 stages + 3 weight = 8

Uncommon launch clock path 4 stages + 8 weight = 12

Divergence = 12/20 = 60%

With this an excellent correlation between post CTS

divergence data (62%) and predicted data (60%) is obtained.

The exact values of weights to be used for each of the above

3 key points for divergence prediction algorithm is based

purely on heuristically analysis done on existing post CTS DB

for a platform. In an experiment, weights were configured for

a already existing digital design based on its post CTS

database. Using these weights, on comparing the post CTS

CTD percentage to predicted divergence percentage there was

very good correlation with accuracy of +/-10%, if the timing

paths were balanced. With the same weights in place DE was

run on another design belonging to the same platform and

similar extent of high accuracy was achieved. Hence, if

weights are configured for DE for a platform design, then they

can be reused across different derivatives from the platform. If

a design is the first of its kind to a new platform, DE can be

run by assuming certain weights to begin with. Paths which

are predicted to be divergent at pre-CTS will remain divergent

even after post CTS. But the predicted divergence percentage

vs actual post CTS based divergence percentage could vary

some extent. The weights will have to be fine-tuned based on

post CTS feedback as shown in Fig 5.

IV. DIVERGENCE PREDICTION ALGORITHM AND

RUN TIME IMPROVEMENTS

The aim of the divergence prediction is to predict, with
sufficient accuracy, the actual divergence percentage of each of
the timing paths in the design before any clock tree is actually
built. The divergence engine (DE) then can be called at various
stages to achieve corresponding aims (Fig 5)

Fig.5 Different stages where DE can be used in the design

 DE needs only the netlist and constraints as inputs to

calculate divergence. The engine is run in the sign-off tool.

Since only instances and their connections are analyzed,

accurate delay calculations are not required. Once the

divergence values are estimated, the DE will require values of

derate, estimated skew and clock insertion latency to calculate

the final uncertainty values. Ideally divergence for each and

every interacting flop pair needs to be calculated. If there is a

design which has 100K flops, the timing path interactions can

run into 20Million. Hence calculation of divergence, based on

every timing path would be time consuming. To solve this

problem, the flop’s immediate fan-in level-1 element is used,

that is a RTL instantiated CTE. If the divergence is calculated

for one flop pair under two interacting level-1 CTE, then all

the flops under them will have the same divergence. Logic-

synthesis inserted clock gating cells are skipped as they can

change with every synthesis run.

DE is composed of 3 major parts. The first step is to find

the leaf level RTL instantiated CTE for each sequential
element. Divergence will be calculated for each of these CTE
pair. The list of CTE (Fig. 6) is written out to a file to be used
by the next stage.

Procedure: create_cteList.tcl

Inputs: timing database of the design under process

Outputs:

1. CTE – fan-out flop mapping for all registers.

2. CTE – RTL clock tree element mapping.

1. Obtain a list of all the leaf sequential elements in the design.

2. For each of the flops, obtain the fan-in element.

a. If such an element exists

i. Look into the fan-in to this element to obtain the RTL CTE element.

ii. If found, assign the CTE to the RTL CTE.

iii. Append the flop to the CTE fan-out list.

b. Write the fan-out list of CTE to the fan-out file.

3. Close the file handles and return the output files.

Fig. 6 Creating the CTE list

The next stage predicts the total clock path based on the

weight assumption given for single timing path for a given

CTE pair (Fig. 7).

Procedure: predict_clock_path

Inputs: List of pre-CTS elements in path

Outputs: Number of elements expected post CTS expansion

1. For each element i in the path,

a. Compare the module name with the previous element’s module name

i. If base module names are different, add a weight of 5

ii. If the second module names are different, add a weight of 1

b. Check the cell name of the element

i. If it is an ICG, add a weight of 2

ii. If it a CTMUX, add a weight of 2

2. Return the total number of elements + weights

Fig. 7 Heuristic for estimating path depth

This process is iterated for single CTE w.r.t. all other CTEs.

If any valid path is found, the output is written the file. Since

each CTE has to be analyzed with all other CTEs, this step is

time intensive. To optimize the run time during this step, the

algorithm has been designed such that the calculation of

divergence for multiple CTE pairs can happen in parallel..

In the last step, the divergence output is parsed through a

Perl script to generate uncertainty command files that can be

read by optimization pre-CTS tool.

V. EXPERIMENTAL RESULTS

A. Test-Case Details

The test case that considered to check out DE is a digital

design which is area and power critical. . The design had been

closed using flat margins assuming 50% clock divergence.

Using DE , divergence was calculated for every timing path

and then mapped to a pie chart details in Fig. 9.

Fig. 9 CTD pie chart of digital design

From the CTD pie chart following are some key take-away.

1) Not many paths with high divergence exist in design.

2) If 50% of the design is assumed to be divergent for

margin calculation, it would be valid only for ~5% of

the design.

3) The margins were pessimistic for ~95% of paths

4) With the use of margins based on divergence engine,

it’s expected to see area benefit for design.

B. Test-Run Details

In order to check out the divergence aware margin

methodology on Design, 4 runs were given till post CTS setup

optimization.

1. Traditional Methodology with flat margins

A flat margin of 50% was assumed.

Clock Latency = 8000ps

Launch derate = 1.0632

Capture derate = 0.945

Skew = 250ps

Flat margin = 50%

Divergence margins = 8000 * 50% (1.0632 – 0.945) + 250 =

714ps

Results are presented in Fig. 10

2. Reduced flat margin flow

In this case, 12% of design is assumed to be divergent based

on the CTD pie chart.

Divergence margins = 8000 * 12% (1.0632 – 0.945) +

250 = 363ps

Results are presented in Fig. 11

3. Divergence aware methodology (DAM)

This run is with the CTD based divergence aware

methodology. Details are captured in section C (Divergence

aware methodology) .

Results are presented in Fig.12

4. No margin flow

Just to make sure design was not over penalized w.r.t margins

and to see how much area gain can be done, design was run

with no margins. Results are presented in Fig.13

C. Divergence aware methodology (DAM)

In this section explains DAM calculations.

1) DE is run on synthesized netlist in signoff timing tool to

calculate “Divergence Percentage” for all possible paths

for a given clock w.r.t. all RTL inserted CTE. This

helps to study the overall divergence percentage of

design. And pick a flat divergence % number which

represents most of the paths and add that as flat

uncertainty. In this case it was 12%. Some portion of

flat margins is included as the optimization tool is

unable to take all the path based uncertainty given.

2) To calculate this flat margin, below formula is used and

added that as clock uncertainty in addition to clock jitter.

 Divergence margins = 8000 * 12 (1.063 – 0.945) + 250

 = 363ps

3) For paths which have high divergence (> 12 %), extra

uncertainty is added in addition to flat margins.

For example,

a) Assume paths between (Launch CT element) ICG1 and

(Capture CT element) ICG2 have a predicted divergence

of 40%.

b) Overall flat divergence is assumed to be 12%. Hence clock

to clock uncertainty applied for say CLK1 will be 363ps

c) Rest 28% of divergence is specific to paths between ICG1

and ICG2. This is applied as uncertainty at logic-

synthesis stage.

d) Flops driven by ICG1 and ICG2 are grouped. Uncertainty

is applied to only specific interacting paths .

Fig 10 Results of Traditional flat margin flow

Fig 11 Results of Reduced flat margins flow

Fig 12 Results of Divergence aware margin flow

Fig 13 Results of No margin flow

D. Analysis of the experiment on Design.

1) Traditional Margin flow.

a) Good timing and leakage picture but area is high.

2) No margin flow.

a) ~5.8% area saved w.r.t traditional margin flow.

b) Huge impact on timing with unrecoverable 330ns

(20X) as total negative slack (TNS).

c) 33% impact on leakage w.r.t traditional margin flow

3) Reduced flat margin flow.

a) ~3.5% of std cell logic area saving w.r.t traditional

margin.

b) 8X degradation in TNS post CTS which is

unrecoverable.

c) 10% increase in Leakage.

4) Divergence aware methodology

a) 3.5% std cell logic area saving

b) Predictable timing picture at pre-CTS stage when

compared to traditional flow.

c) Good leakage.

d) High run time.

Hold optimizations do not affect results as CTS is not

influenced but just data path optimization

VI. CONCLUSION

We have developed a custom-built divergence prediction

engine that generates path-specific margins based on clock

tree divergence with the following advantages.

1) Complete and accurate prediction of expanded clock tree

divergence at logic synthesis level without any physical

information like floorplan.

2) Very early architectural feedback to the RTL team on

critical paths based on clock tree divergence.

3) With realistic margins, we can predict target frequency at

pre-CTS.

4) Engine once configured (weights configured) for a

platform works with same consistency across different

designs.

5) On a post CTS database, the engine can derive weights and

hence can calculate the real margins which can be fed

back to improve optimization.

6) Divergence Engine can be run on any netlist with a quick

turnaround time.

This algorithm can also be extended to dynamically

model the local clock skews, useful skew scenarios.

